The Adaptation Model of a
Runtime Adaptable DBMS

Florian Irmert, Thomas Fischer, Frank Lauterwald, Klaus Meyer-Wegener

Friedrich-Alexander University of Erlangen and Nuremberg
Department of Computer Science
Chair for Computer Science 6 (Data Management)
Martensstrasse 3
91058 Erlangen, Germany
{florian .irmert, thomas.fischer, frank.lauterwald, kmw}@cs .fau.de

Abstract. Nowadays maintenance of database management systems
(DBMSs) often requires offline operations for enhancement of function-
ality or security updates. This hampers the availability of the provided
services and can cause undesirable implications. Therefore it is essen-
tial to minimize the downtime of DBMSs. We present the CoBRA DB
(Component Based Runtime Adaptable DataBase) project that allows
the adaptation and extension of a modular DBMS at runtime. In this
paper we focus on the definition of an adaptation model describing the
semantics of adaptation processes.

1 Introduction

In recent years the database community has realized that common database
systems do not fit into every environment [6]. The obvious solution is the devel-
opment of specialized DBMSs for each environment. However this approach is
not suitable with respect to development cost, time to market and maintenance.

Tailor-made DBMSs [5] try to answer this challenge by adapting a DBMS
towards a specific environment by providing a common code base from which
customized DBMSs may be derived. Changing the functional range of such a
DBMS however requires a shutdown and redeployment of a new version. Taking
an application offline is often not feasible in some environments.

In the CoBRA DB (Component Based Runtime Adaptable DataBase)
project [2] we propose an approach to tailor a DBMS at runtime. It uses a
kind of DBMS “construction kit” and basic modules that are necessary in every
DBMS. A DBMS can be assembled by choosing the appropriate modules for the
intended functionality of the system. An important challenge is the modification
of modular DBMSs at runtime. In our prototype it is possible to add, exchange,
and remove modules while the database system is running. As a foundation we
have developed an adaptation framework [3] that provides the exchange of com-
ponents at runtime in a transparent and atomic operation. In this paper we
present the adaptation model of CoBRA DB and its adaptation types.

Theoriginal publicationis availableat www.springerlink.con{(DOI: 10.1007/978-3-642-02843-4_:


buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext
The original publication is available at www.springerlink.com (DOI: 10.1007/978-3-642-02843-4_19)

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext


2 CoBRA DB Runtime Environment

Runtime adaptation as a prerequisite to the proposed adaptable DBMS enables
addition, removal and exchange of DBMS components at runtime without any
downtime of the whole system.

To meet these requirements we have designed a runtime environment [3]
based on a service-oriented component model [I/4]. The runtime environment is
based on the OSGi Service Platform [4]. A component in the CoBRA runtime
environment implements at least one service. The architecture of the CoBRA
DB itself with its functional properties must therefore be sufficiently described
by its services. To enable the adaptation to different environments, components
implementing the same service can be exchanged at runtime. The resulting re-
quirements for runtime adaptation are met by a transparent dynamic proxy
concept which ensures the atomicity of the adaptation and the consistency of
the state transfer from one component to the replacing one. Details can be found
in [3].

3 Adaptation Model

Based on the prerequisites given by the runtime environment we developed an
adaptation model in order to formalize the constraints for possible adaptations.
This includes the structural model of the CoOBRA DB architecture as well as the
modeling of the different adaptation possibilities.

For the concrete specification of the adaptation model of the CoOBRA DB we
have chosen a service-oriented point of view. Figure [I| shows the structure of our
model which consists of three design levels. The functionality of the DBMS is
modeled by the specification of services (L3) like a PageService providing page-
oriented access. The service descriptions of L3 must remain valid, even over
adaptations. One or more services are embodied as components on L2, which
are themselves implemented in one or more classes (L1). The components defined
on L2 are the object of adaptation.

v T (v Ty i
<<service>> <<component>>
s1 % c1 | Class A |—>| Class B |
: v-----——__-- B -—__--: V‘/<<USE>>
<<service>> <<component>>
2 % 2 |<1 1 Class C |
T T o <<use>>
<<service>> <<service>> <<component>>
s3 s4 % 3 | Class D |—>| Class E |
® ® : w : :
service level component level class level
L3 L2 L1

Fig. 1. Model hierarchy



To reflect the different changes possible in this model hierarchy we have
identified different adaptation types.

3.1 Adaptation by component exchange

Components that implement the same services are interchangeable through
adaptation by component exchange and may therefore only differ in their non
functional properties. In figure [2] service P is realized by component C1. During
the adaptation C1 is replaced by component C2 (which also implements service
P).

<<service>> before
U <<component>>
; c1
<<service>> before P . IR— T
l:J % <<component>> p R ) ‘
y : Cl \EJ <<component>>
R ‘ ~<sorvicoss C2
P kJ-----------~ | X q""""""] | <<use>>
<<component>> new <<component>>
C2 C3
after after
Fig. 2. Component exchange Fig. 3. Addition of a service

An example for this adaptation type is the exchange of the buffer replacement
strategy, e.g. a FIFO strategy can be replaced by LRU (both implement the same
service, but with a different algorithm).

Changes on L3 are also possible by component exchange on L2. Figure [3]
shows the addition of a new service X implemented by component C3. Service P
is realized by both component C1 and component C2 with the difference that C2
needs C3. Therefore C2 may only be deployed if a component that implements X
is available. Obviously it is crucial to serialize the install operations in a suitable
manner (C3 has to be installed before C1 can be replaced by C2). Removal of
services on L3 is performed analogously.

3.2 Addition/removal of decorator components

Another adaptation type is the addition or removal of decorator components.
The scenario depicted in figure [d] shows the addition of a component C2 which
acts as a decorator for C1. Both implement the same service P but the addition
of C2 improves the non functional properties for the realization of P. An example
is the addition of a buffer component to an I/O component in order to speed up
the response time of P.



<<service>> before

U <<component>>

Y C1l
<<service>> [Q------------ !

S — 3

AN <<component>>

C2

R~ == ==~ ; ! <<use>>

[ ] <<component>>
L] Cc1

after

Fig. 4. Addition of a component

4 Conclusion and future work

This paper introduces an approach to model adaptation in a DBMS. We specify
a model to define a common set of functionality which can be tailored to different
scenarios by composition of their implementing components and the adaptation
of these components can be performed at runtime.

Our current research focuses on the finalization of a full-fledged runtime
adaptable DBMS for embedded systems to evaluate the adaptability in more
real world scenarios, especially in the field of pervasive computing. Another
challenge is the definition of transaction semantics in adaptive systems and the
enhancement of the framework to cover crosscutting concerns in order to build
an adaptable transaction management.

References

1. H. Cervantes and R. S. Hall. Autonomous adaptation to dynamic availability using
a service-oriented component model. In ICSE ’04: Proceedings of the 26th Interna-
tional Conference on Software Engineering, pages 614—623, Washington, DC, USA,
2004. IEEE Computer Society.

2. F. Irmert, M. Daum, and K. Meyer-Wegener. A new approach to modular database
systems. In Software Engineering for Tailor-made Data Management, pages 41-45,
2008.

3. F. Irmert, T. Fischer, and K. Meyer-Wegener. Runtime adaptation in a service-
oriented component model. In SEAMS ’08: Proceedings of the 2008 International
Workshop on Software Engineering for Adaptive and Self-Managing Systems, May
2008.

4. OSGi Alliance. OSGi Service Platform core specification, release 4, August 2005.

5. M. Rosenmiiller, N. Siegmund, H. Schirmeier, J. Sincero, S. Apel, T. Leich,
O. Spinczyk, and G. Saake. FAME-DBMS: Tailor-made data management solu-
tions for embedded systems. In Proceedings of the EDBT’08 Workshop on Software
Engineering for Tailor-made Data Management, pages 1-6. University of Magde-
burg, 2008.

6. M. Stonebraker and U. Cetintemel. ”One Size Fits All”: An idea whose time has
come and gone. In ICDE ’05: Proceedings of the 21st International Conference
on Data Engineering, pages 2—11, Washington, DC, USA, 2005. IEEE Computer
Society.



	The Adaptation Model of aRuntime Adaptable DBMS
	 Florian Irmert, Thomas Fischer, Frank Lauterwald, Klaus Meyer-Wegener 
	Introduction
	CoBRA DB Runtime Environment
	Adaptation Model
	Adaptation by component exchange
	Addition/removal of decorator components

	Conclusion and future work





