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Abstract: Data stream processing systems enable querying continuous data without
first storing it. Data stream queries may combine data from distributed data sources
like different sensors in an environmental sensing application. This suggests dis-
tributed query processing. Thus the amount of transferred data can be reduced and
more processing resources are available.

However, distributed query processing on probably heterogeneous platforms com-
plicates query optimization. This article investigates query optimization through op-
erator graph changes and its interaction with operator placement on heterogeneous
distributed systems. Pre-distribution operator graph changes may prevent certain op-
erator placements. Thereby the resource consumption of the query execution may
unexpectedly increase. Based on the operator placement problem modeled as a task
assignment problem (TAP), we prove that it is NP-hard to decide in general whether an
arbitrary operator graph change may negatively influence the best possible TAP solu-
tion. We present conditions for several specific operator graph changes that guarantee
to preserve the best possible TAP solution.

1 Introduction

Data stream processing is a well suited technique for efficient analysis of streaming data.
Possible application scenarios include queries on business data, the (pre-)processing of
measurements gathered by environmental sensors or by logging computer network usage
or online-services usage.

In such scenarios data often originate from distributed sources. Systems based on different
software and hardware platforms acquire the data. With distributed data acquisition, it is
feasible to distribute query processing as well, instead of first sending all data to a central
place. Some query operators can be placed directly on or near the data acquisition sys-
tems. This omits unnecessary transfer of data that are not needed to answer the queries,
and partitions the processing effort. Thus querying high frequency or high volume data
becomes possible that would otherwise require expensive hardware or could not be pro-
cessed at all. Also data acquisition devices like wireless sensor nodes profit from early
operator execution. They can save energy if data is filtered directly at the source.



Problem Statement Optimization of data stream queries for a distributed heterogeneous
execution environment poses several challenges: The optimizer must decide for each op-
erator on which processor it should be placed. Here and in the remainder of this article, the
term processor stands for a system that is capable to execute operators on a data stream.
A cost model is a generic base for the operator placement decision. It can be adapted to
represent the requirements of specific application scenarios, so that minimal cost repre-
sents the best possible operator distribution. Resource restrictions on the processors and
network links between them must also be considered. In a heterogeneous environment
costs and capacities will vary among the available processors. The optimizer can optimize
the query graph before and after the placement decision. Pre-placement changes of the
query graph may however foil certain placements and a specific placement limits the pos-
sible post-placement algebraic optimization. For example, a change of the order of two
operators can increase costs if the first operator of the original query was available directly
on the data source and the now first operator in the changed query is not. This must be
considered when using common rules and heuristics for query graph optimization.

Contribution We investigate the influence of common algebraic optimization techniques
onto a following operator placement that is modeled as a task assignment problem (TAP).
We prove that the general decision whether a certain change of the query graph worsens
the best possible TAP solution is NP-hard. We then present analysis of different common
operator graph changes and state the conditions under which they guarantee not to harm
the best possible placement. We do not study any special operator placement algorithm,
but focus on preconditions for graph changes.

Article Organization The following section gives an overview on related work from
both the fields of classical database query optimization and data stream query optimiza-
tion. Sect. 3 introduces the TAP model for the operator placement. It is the basis for
the following sections. We prove the NP-hardness of the query-graph-change influence in
Sect. 4 and present the preconditions for special graph changes in Sect. 5. The next section
shows how to use the preconditions with an exemplary cost model for a realistic query. In
the last section we conclude and present some ideas for further research.

2 Related Work

This section presents related work on operator graph optimization from the domains of
data base systems (DBS) and data stream systems (DSS). Due to space limitations, we are
unfortunately only able to give a very rough overview.

Query optimization in central [JK84] as well as in distributed [Kos00] DBS is a well stud-
ied field. Basic ideas like operator reordering are also applicable to DSS. Some operators,
especially blocking operators, however have different semantics. Other techniques like
optimization of data access have no direct match in DSS. Strict resource restrictions are



also rarely considered with distributed DBS because they are not thought to run on highly
restricted systems.

The authors of [HSS+14] present a catalog of data stream query optimizations. For each
optimization, realistic examples, preconditions, its profitability, and dynamic variants are
listed. Among operator graph changes the article also presents other optimizations, like
load-shedding, state sharing, operator placement and more. They impose the question for
future research, in which order different optimizations should be performed. In the paper
at hand, we go a first step into this direction by studying the influence of operator graph
changes to following placement decisions. We detail the impact of all the five operator
graph changes from [HSS+14]. We think that these changes cover the common query
graph optimizations.

The articles [TD03] and [NWL+13] present different approaches to dynamic query opti-
mization. The basic idea is that the order in which tuples visit operators is dynamically
changed at runtime. The concept of distributed Eddies from [TD03] decides this on a
per tuple basis. It does not take the placement of operators into account. Query Mesh
[NWL+13] precreates different routing plans and decides at runtime which plan to use for
a set of tuples. It does not consider distributed query processing.

3 Operator Placement as Task Assignment Problem

The operator placement can be modeled as a TAP. Operators are represented as individual
tasks. We use the following TAP definition, based on the definition in [DLB+11].

P is the set of all query processors. L is the set of all communication channels. A single
communication channel l ∈ L is defined as l ⊆ {P × P}. A communication channel
subsumes the communication between processors that share a common medium.

T is the set of all operators. The data rate (in Byte) between two operators is given by
rt1t2 , t1, t2 ∈ T . The operators and rates represent the query graph.

ctp are the processing costs of operator t on processor p. kp1p2 gives the cost of sending
one Byte of data between processor p1 and processor p2. The costs are based on some
cost model according to the optimization goal. Since cost models are highly system and
application specific, we do not assume a specific cost model for our research of query-
graph-change effects. Sect. 6 shows how to apply our findings to an exemplary cost model.
[Dau11, 98–121] presents methods for the estimation of operator costs and data rates.

The distribution algorithm tries to minimize the overall cost. It does this by minimizing
term (1), considering the constraints (2) - (5). The sought variables are xtp. xtp = 1
means that task t is executed on processor p. The first sum in equation (1) are the overall
processing costs. The second sum are all communication costs.

min
∑
t∈T

∑
p∈P

ctpxtp +
∑
t1∈T

∑
p1∈P

∑
t2∈T

∑
p2∈P

kp1p2rt1t2xt1p1xt2p2 (1)



∑
t∈T

ctpxtp ≤ b(p),∀p ∈ P (2)∑
(p1,p2)∈l

∑
t1∈T

∑
t2∈T

rt1t2xt1p1xt2p2 ≤ d(l),∀l ∈ L (3)

∑
p∈P

xtp = 1,∀t ∈ T (4)

xtp ∈ {0, 1} ,∀p ∈ P,∀t ∈ T (5)

Constraint (2) limits the tuple processing cost of the operators on one processor to its
capacity b(p). Constraint (3) limits the communication rate on one communication channel
to its capacity d(l). Constraints (4) and (5) make sure that each task is distributed to exactly
one single processor.

Our findings are solely based on the objective function together with the constraints. We
do not assume any knowledge about the actual distribution algorithm. There exist different
heuristics for solving a TAP. See e.g. [DLB+11] and [Lo88].

4 Generic Operator-Graph-Change Influence Decision

A single algebraic query transformation changes the TAP in numerous ways. For example
an operator reordering changes multiple data rates, which are part of multiple equations
inside the TAP. When some of those factors increase, it is hard to tell how it affects a
following operator placement. The transformed query might even become impossible to
execute.

One way to determine the usefulness of a given transformation is to compare the min-
imum costs of both the original and the transformed query graph. If the transformed
query graph has lower or equal cost for the optimal operator placement, i.e. lower or
equal minimum cost, than the original query, the transformation has a non-negative ef-
fect. U(Q) denotes the query graph that results from applying a change U to the original
query Q. Since the operator placement needs to solve a TAP, an NP-complete problem,
it is not efficient to compute the placement for each possible transformation. A function
CompareQuery(Q,U(Q)), that compares two queries and returns true iff U(Q) has
smaller or equal minimal costs than Q would solve the problem.

Sentence. CompareQuery(Q,U(Q)) is NP-hard.

Definition. Utp is a transformation that allows task t only to be performed by processor
p. All other aspects of Utp(Q) are identical to Q. Both Q and Utp(Q) have equal costs
when operators are placed in the same way, i.e. as long as t is placed on p.

Proof. Given CompareQuery(Q,U(Q)) and transformationsUtp it is possible to com-
pute the optimal distribution. For each task t it is possible to compare Q and Utp(Q) for



each processor p. If CompareQuery(Q,Utp(Q)) returns true Utp(Q) has the same
minimum cost as Q. Thus the optimal placement of t is p. The algorithm in pseudo code:

ComputeDistribution(Q) {
foreach (t in Tasks) {

foreach (p in Processors) {
if (CompareQuery(Q, U_tp(Q)) == true) {

DistributeTaskProcessor(t, p);
// makes sure t will be distributed to p

break; // needed if multiple distributions exist
} } } }

ComputeDistribution(Q) calls CompareQuery(Q,U(Q)) at most |T | · |P |
times. This is a polynomial time reduction of ComputeDistribution(Q). To com-
pute the optimal distribution it is necessary to solve the TAP, an NP-complete problem.
This proves that CompareQuery(Q,U(Q)) is NP-hard.

5 Specific Query Graph Changes

While the general determination of a query graph change’s impact is NP-hard, it can easily
be determined for specific cases. If a transformation neither increases variables used for the
TAP nor adds new variables to the TAP, it is trivial to see that all valid operator placement
schemes are still valid after the transformation. For the transformed query exist operator
placements with lower or equal costs than the original query’s costs: the original optimal
placement is still valid and has lesser or equal costs.

We establish preconditions for all the five operator graph changes from [HSS+14]. If
the preconditions are met the transformation is safe. That means for each valid operator
placement scheme of the original query exists a valid scheme for the transformed query
with equal costs. So the preconditions especially guarantee that the minimum costs do not
rise. However, if heuristic algorithms are used for solving the TAP, they may fail to find
an equally good solution for the transformed query as they did for the original query and
vice versa, because local minima may change.

Table 1 shows all preconditions at a glance. We now justify why these preconditions hold.

Notation Most of the used notation directly follows from the TAP, especially ctp and
rt1t2 . The cost cAp of an operator A on the processor p depends on the input stream of A
and thus on the overall query executed before that operator. Query graph changes affect the
input streams of operators an thus also change the costs needed to execute those operators.
In order to distinguish between the original and the changed query we useU(A) to indicate
the operator A with the applied query change. U(A) and A behave in the same way, but
may have different cost, since they work on different input streams. The costs cU(A)p are
needed to execute U(A) on p and the following operator t receives an input stream with



the data rate rU(A)t. In addition rI denotes the input data stream and rO denotes the output
data stream.

Operator Reordering Operator reordering switches the order of two consecutive oper-
ators. The operator sequence A → B is transformed to U(B) → U(A). In the original
query, operator A is placed on processor pA and operator B on pB . It is possible that pA
is the same processor as pB , but it is not known whether both operators are on the same
processor, so this cannot be assumed. pA = pB would result in a set of preconditions that
are easier to fulfill than the preconditions we present. The transformed query can place the
operators U(B) and U(A) on any of the processors pA and pB .

Case 1: U(B) is placed on pA and U(A) is placed on pB . To insure the validity of all
distributions, the transformed operators’ cost must not exceed the cost of the other
original operator, which results in equations (6) and (7). Since the reordering affects
the data rates between operators, precondition (8) must hold.

Case 2: Both operators are placed on pA. This adds an internal communication inside
pA to the operator graph. Equation (9) ensures that internal communication is not
factored into the TAP constraints and cost function. The sum of the cost for both
transformed operators must be smaller or equal than the cost of A, which is de-
scribed by equation (10). The changed data rates are reflected in equation (11).

Case 3: Both operators are placed on pB . This case is similar to case 2 and can be fulfilled
with the preconditions given by equations (9), (12) and (13).

Case 4: The remaining option, U(B) is placed on pB and U(A) is placed on pA, can
be viewed as changed routing. Since the remaining distribution of the query is
unknown, the changed routing can be problematic and this option is inherently not
safe. It is possible that pA processes the operator that sends the input to A and
that pB has an operator that processes the output stream of B. In this situation the
changed routing causes increased communication cost, since the tuples must be send
from pA to pB (applying B) to pA (applying A) to pB instead of only sending them
once from pA to pB .

If one of the operators has more than one input stream not all cases can be used. Even
if the stream does not need to be duplicated, if A has additional input streams only case
2 is valid. The other cases are not safe anymore, because the transformation changes the
routing of the second stream from destination pA to destination pB . Similar, if B has
additional input streams only case 3 is safe.

Redundancy Elimination This query change eliminates a redundant operator: the query
graph has an operator A on two different positions processing the same input stream,
duplicated by another operator. This change works by removing one of the instances of A
and duplicating its output.

The original query consist of three operators. Operator D (Dup Split in [HSS+14]) is
placed on pD, while an instance of A is placed both on p1 and p2. The transformed query



Transformation Case Precondition (∀p ∈ P )

Operator reordering

Case 1:
U(B) on pA
U(A) on pB

cAp ≥ cU(B)p (6)

cBp ≥ cU(A)p (7)

rAB ≥ rU(B)U(A) (8)

Case 2:
U(B) on pA
U(A) on pA

kpp = 0 ∧ ∀l ∈ L : (p, p) /∈ l (9)

cAp ≥ cU(B)p + cU(A)p (10)

rAB ≥ rO (11)

Case 3:
U(B) on pB
U(A) on pB

kpp = 0 ∧ ∀l ∈ L : (p, p) /∈ l (9)

cBp ≥ cU(B)p + cU(A)p (12)

rAB ≥ rI (13)

Redundancy elimination –
kpp = 0 ∧ ∀l ∈ L : (p, p) /∈ l (9)

cDp ≥ cU(A)p + cU(D)p (14)

Operator separation –
kpp = 0 ∧ ∀l ∈ L : (p, p) /∈ l (9)

cAp ≥ cA1p + cA2p (15)

Fusion

Case 1:
All on pA

cAp ≥ cCp (16)

rAB ≥ rO (17)

Case 2:
All on pB

cBp ≥ cCp (18)

rAB ≥ rI (19)

Fission –

kpp = 0 ∧ ∀l ∈ L : (p, p) /∈ l (9)

cAp ≥ cSp + cMp +
∑
U(A)

cU(A)p (20)

Table 1: Preconditions for safe query graph changes that must be fulfilled for all processors. If an
operator is not available on some processors, the preconditions can be assumed fulfilled for these
processors. It is sufficient that the preconditions of one case are fulfilled.



consists of the operators U(A) and U(D), with U(D) duplicating the output instead of
the input. The only possibility to place the transformed query without changing routing
is to place both U(A) and U(D) on pD. The additional internal communication, due to
the additional operator on pD, again forces equation (9). To ensure that any processor can
perform the transformed operators, equation (14) is necessary.

In some situations (when pD is the same processor as p1 or p2) the change is safe as long
as A does not increase the data rate. But since it is unknown how the operators will be
placed, this requirement is not sufficient.

Operator Separation The operator separation splits an operator A into the two opera-
tors A1 → A2. Additional internal communication results in precondition (9). Equation
(15) ensures that the separated operators’ costs are together less than or equal to A’s cost.

Fusion Fusion is the opposite transformation to operator separation. The two operators
A→ B are combined to the single operator C (a superbox in [HSS+14]). For the original
query A is placed on pA and B on pB . The combined operator can be placed on either
pA or pB . The cost for C must not exceed the cost of pA or pB respectively. In addition,
the data rates are affected and thus also add preconditions. So either the fulfillment of
equations (16) and (17) (if C is placed on pA) or (18) and (19) (if C is placed on pB)
guarantee the safety of this change. A special case of the fusion is the elimination of an
unneeded operator, i.e. removing the operator does not change the query result. Since the
redundant operator can change the data rate of a stream (e.g. a filter applied before a more
restrictive filter) it still needs to fulfill the preconditions to be safe.

Fission The original query is only the single operator A. Fission replaces A by a par-
titioned version of it, by applying a split operator S, multiple versions of U(A), which
can potentially be distributed across different processors, and finally a merge operator M
to unify the streams again. Since it is unknown whether other processors exist that can
share the workload profitably, the transformed operators must be placed on the processor
that executed the original A. This is safe when preconditions (9) and (20) hold. These
equations demand that the combined costs of the split, merge and all parallel versions of
U(A) can be executed by all processors with smaller or equal cost than the original A.

6 Application

Given a query and a DSS it is now possible to test whether a specific change is safe. Using
an exemplary cost model we examine a simple example query.

Cost Model [Dau11, 91–98] presents a cost model that will be used for the following
example. We use a filter and a map operator, which have the following costs:



CFilter = λiCFil + λoCAppendOut (21)
CMap = λiCproj + λoCAppendOut (22)

CFil and Cproj are the costs associated with filtering respectively projecting an input tuple
arriving at the operator. CAppendOut represents the costs of appending one tuple to the
output stream. λi is the input stream tuple rate, while λo is the output stream tuple rate. For
those operators λo is proportional to λi and the equations (21) and (22) can be simplified
to λifOp, where fOp is the cost factor of operator O on processor p for one tuple.

Using these simplified equations, the assumption that the tuple rate is proportional to the
data rate and costs and selectivities are non-zero, equations (6) to (8) can be rewritten as:

λIfAp ≥ λIfBp ⇔ fAp

fBp
≥ 1 (23)

σAλIfBp ≥ σU(B)λIfAp ⇔ σA

σU(B)
≥ fAp

fBp
(24)

σAλI ≥ σU(B)λI ⇔ σA

σU(B)
≥ 1 (25)

The equations for the other two cases shown in table 1 can be similarly rewritten. Equa-
tions (23) to (25) show that there are relatively few values to compare: We need the ratio
of the operator selectivity and for each processor the ratio of operator costs.

Example We examine the simple query of a map operator M followed by a filter F
applied on a stream containing image data monitoring conveyor belts transporting freshly
produced items. The query supports judging the quality of the current production run. Op-
erator M classifies each tuple (and thus each observed produced item) into one of several
quality classes and is rather expensive. F filters the stream for one conveyor belt, because
different conveyor belts transport different items and are observed by different queries.

M does not change the data rate of the stream. It simply replaces the value unclassified
already stored inside the input stream for each tuple with the correct classification and thus
has a selectivity of 1. There are multiple types of processors available inside the production
hall. Depending on the processor type the ratio fMp

fFp
differs quite a bit, but overall M is

more expensive: this ratio fluctuates between 2 and 10. Equations (23) to (25) show that
the selection push down is always safe if σU(F ) is smaller or equal than 0.1: In this case
it is always possible that the two operators switch their places without violating additional
constraints of the TAP. If σU(F ) is greater than 0.1 this change is not necessarily safe. It is
possible that the preconditions of one of the other two cases (both operators on the same
processor) are fulfilled or another good distribution is possible, but the latter cannot be
tested in a reasonable time as we discussed in Sect. 4.



7 Conclusion

We presented our findings on the interaction between optimization through query graph
changes and the placement of operators on different heterogeneous processing systems.
We first motivated our research and defined the problem. Existing work on query opti-
mization through operator graph changes in the context of DMS and DSS was presented,
none of which studied the interaction with operator placement. The next section presented
the TAP model of the distribution problem. We showed that it is NP-hard to decide in
general if an arbitrary query graph change can negatively influence the best possible op-
erator placement scheme. Based on a selection of common query graph changes from the
literature, we deduced preconditions under which operator placement does not mind the
changes. The last section showed the application of our findings with an exemplary cost
model for a realistic query.

The preconditions for safe operator graph changes are quite restrictive. They severely limit
the possible changes if followed strictly. As with general query optimization, development
of heuristics to loosen certain preconditions seems promising. The preconditions presented
in this article are the basis for such future work. Another interesting field is the direct
integration of query graph optimization in the usually heuristic distribution algorithms.
Distribution algorithms could be extended to consider query graph changes in addition to
the operator placement. We plan to investigate these ideas in our future research.
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