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Kurzfassung

Verarbeitung und Analyse von
Positionsdatenströmen

In der DFG Forschergruppe 1508 (BATS) wird ein Sensornetzwerk bestehend aus bodenge-
stützten sowie mobilen Sensoren zur Überwachung von Fledermäusen entwickelt. In dieser
Arbeit werden Techniken and Notationen herausgearbeitet, um Positionsdatenströme zu
verarbeiten und zu analysieren.

Events und Aktivitäten sind Abstraktionen von Positionsdaten. Events werden unter-
teilt in Low- und High-Level-Events. Ein Low-Level-Event ist eine kontinuierliche Anfrage,
deren Ergebnis als Event interpretiert wird. Ein High-Level-Event ist ein (komplexes)
Muster von anderen Events. Der Ansatz verbindet damit Datenstromverarbeitung und
Complex Event Processing. Aktivitäten werden in einer erweiterten Form von UML-
Zustandsdiagrammen modelliert.

Die Definition von Aktivitäten erlaubt es, Verhalten vorherzusagen. Ein Verfahren für
adaptive Vorhersagen zur Verbesserung der Genauigkeit von Vorhersagen wird vorgestellt
für den Fall, dass mehrere Hypothesen für Abhängigkeiten in Bayesschen Netzen vorliegen.

Von Biologen gewünschte bisherige Analysen wie Heatmaps und Local Convex Hulls
wurden ebenso in den Prototypen integriert wie neue Analysen. Techniken, die zur
Implementierung von Vorhersagen eingeführt wurden, werden ebenso zur Inferenz über
bedingten Wahrscheinlichkeitsverteilungen angewendet. Zusätzlich können auch Eigen-
schaften wie die Dauer oder Region von Aktivitäten durch spezielle Tabellen mit bedingten
Verteilungen untersucht werden. Darüber hinaus wurde ein Ansatz zur Definition von
Persönlichkeit anhand dieser Tabellen vorgestellt.

Weiterhin wird der Einfluss von Datenqualität auf Ergebnisse von Analysen diskutiert
und die Zuverlässigkeit insbesondere von adaptiven Vorhersagen sowie die Ausdrucks-
mächtigkeit vorgestellter Notationen evaluiert.





Abstract

Processing and Analysis of Position Data Streams

The DFG research group 1508 (BATS) develops a sensor network consisting of static
and mobile sensors to monitor bats. This thesis elaborates techniques and notations to
process and analyze position data streams.

Abstractions for position data were elaborated: events and activities. Events are
further divided into continuous queries interpreted as events and event patterns. Hence,
the approach combines data stream processing and complex event processing. UML state
charts were extended to be suitable for modeling activities.

The definition of activities exploits Dynamic Bayesian networks to predict behavior.
Adaptive predictions are proposed to increase precision of predictions if several hypotheses
of dependencies are specified.

Several state-of-the-art analyses, e.g. heatmaps and local convex hulls, as well as new
analyses are implemented in the prototype. Techniques to predict activities additionally
support inference on available Conditional Probability Tables as well as Conditional
Tables for characteristics of activities. A possible definition of personality of animals is
proposed.

Finally, the approach and prototype is evaluated against the objectives as well as
reliability of predictions, influence of data quality on analyses and expressiveness of
presented notations.
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1 Introduction

I can’t be as confident about computer science as I can about biology.
Biology easily has 500 years of exciting problems to work on. It’s at that level.

Donald Knuth (1993)

Two important goals of computer science are to automatize the acquisition of informa-
tion and to enable access to information, especially to support solving problems in other
disciplines. As Donald Knuth pointed out many years ago, biology has many exciting
problems to work on, and exploring the behavior of bats is definitely one of them. The
following chapters present techniques and a prototype to support biologists on analyzing
position data streams to gain knowledge on how and why bats and other animals behave
the way they do.

1.1 Motivation

In recent years, technological advances as well as the everlasting miniaturization of
integrated circuits and their costs allowed to deploy sensor nodes in more and more
circumstances. It is now technically and economically viable to attach sensors to animals
as small and light-weighted as bats. There is a substantial amount of questions to be
answered on the behavior of bats.

Currently, their position data are captured per pedes or via a vehicle. Automatically
gathering and analyzing positions significantly increases the possible resolution, amount
and coverage of collected data. Moreover, it leads to substantial reductions of manual
work and allows biologists to focus more on interpreting the results of state-of-the-art
and novel analyses.

The analysis of position data streams and their aggregation to behavior and activities
raises several interesting problems. One important aspect of such an analysis is how
to interpret incoming position data and how to include knowledge of domain experts.
The abstraction level of movement descriptions may vary, for example ranging from very
concrete behavior like a movement track in a certain shape to the abstract behavior flying.
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Nonetheless should those descriptions influence the detection and aggregation of behavior.
Another crucial aspect is how the analysis of position data streams could benefit both
from data stream and complex event processing.

Since animals are not the only entities being tracked in this day and age, there is a
wide range of possibilities of applying the results of this work.

1.2 Scenario

This thesis was created in the context of the DFG research group 1508 or rather BATS as
it is called in the whole document. Its primary goal is “to gain fundamental insight in the
design, construction and operation of resource-scarce, heterogenous, intelligent networks
consisting of static and mobile sensors” [DFG13]. Biologists, computer scientists and
electrical engineers collaborate to develop and demonstrate methods and techniques for
gathering data, data management and data analysis. The scope of this thesis especially
covers topics of data analysis and data management.

S
S

S

S S

S

Mobile sensor nodes (Bat)

Stationary sensor network (Bottom)

Management and data processing

Figure 1.1: Topology and Architecture of the Heterogenous Sensor Network [DFG13]

Figure 1.1 outlines the architecture of the sensor network. Bats are equipped with
mobile sensor nodes. Those mobile sensor nodes are monitored by a network of ground-
based, static sensors gathering streams of positions and environmental data.
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1.3 Objectives

Even though the sensor network is not yet deployed, there are some assumptions on
the available sensors and data. Positions of bats are emitted every second. Each position
element contains a value for x, y and z. The system will achieve a precision of x and y

in the range of meters or at worst tens of meters. Whether the z-axis is usable at all
has to be evaluated in the field. Moreover, sensors can be attached to ground nodes.
Hence, data input of sensors measuring temperature, humidity, brightness, noise and
other environmental data is expected.

The design and implementation of methods, techniques and a finally deployed system
are driven by both biologists questions and technological proposals to be verified and
possibly revised. Biologists want to gain more insight into bat behavior. Moreover,
they would like to use the developed system and its techniques to examine a broad
range of species in the future. On the engineering side, there are many design decisions
to be determined in order to create a wireless sensor network and the techniques to
process gathered data. Those issues are not limited to data management, but also
involve software infrastructure, network topology and the actual hardware to be deployed.
BATS is divided into several subprojects1 tackling those issues and elaborating biologists
requirements.

1.3 Objectives

Processing position data streams in the context of tracking animals in sensor networks
raises several interesting problems. Most of the challenges arise not only restricted to
bats, but for a wide range of different species.

A crucial goal of this thesis is to describe a system to process position data streams
into more expedient output to answer biologists questions. The approach to build such a
system will be described in section 1.4. The objectives and description of the system are
provided in the following subsections.

1.3.1 Questions in Biology

Biologists have several assumptions on the behavior of bats and hypotheses on probable
behavior. They want to find out if those hypotheses are true and whether current theories
on the behavior have to be revised. Moreover, they want to find new behavioral patterns

1 http://www.for-bats.org/subprojects.shtml
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and gain more in-depth knowledge on existing ones. Current questions and behavioral
hypotheses to be validated are elaborated in chapter 2.

Since the prototype is intended to be used by biologists, it should provide certain
techniques to support experiments, for example by automatically calling external scripts
or programs at the occurence of particular events. The integration of state-of-the-art
analyses in the chosen processing model has to be assessed and executed.

As soon as the presented techniques are tested in practice, the list of questions to be
answered will inevitably grow. Hence, it should be easy to reuse existing and to add new
analyses.

1.3.2 Events and Activities

Events and activities of tracked animals or objects are an important result of the analysis
of position data. They are an integral part of the animals behavior. Hence, events and
activities are one crucial output of the prototype. Since their description depends on
knowledge of domain experts, modeling plays an important role. As soon as activities are
available, predictions of those activities get more and more interesting. Predictions may
support experiments and are useful to validate the current state of behavioral knowledge.

1.3.3 Visualization

In order to support biologists to interpret findings, visualizations have to be provided.
Examples for reasonable visualizations are a map containing the current position of
observed bats, heatmaps, local convex hulls and diagrams depicting sequences of activities
over time. A graphical user interface is not necessarily included by the term visualization.

1.3.4 Data Quality

The data quality undoubtedly has impact on different analyses. The availability of the
z-axis may allow richer queries and descriptions of events.

It should be assessed how accurate the position data streams need to be for reliable
results of the presented analyses and visualizations. Some hints should be provided on
the restrictions to answer questions with regard to sampling rate, the quality of the
z-axis and the spatial resolution in general. Alternative approaches to cope with data
quality problems should be discussed as well.
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1.3.5 Generalization

Analyzing position data streams to track animals or various kinds of objects is an
important matter not only restricted to tracking bats. Hence, the system should provide
a more general solution to the analysis of position data streams to be applicable in a
wide range of problems.

1.4 Approach

In order to achieve all depicted objectives, biologists questions and requirements have to
be examined and considered in every aspect of the presented approach and prototype.
However, tailoring design decisions, presented techniques and analyses only to BATS
was avoided where possible. The abstraction of techniques and notations should be
particularly high to be applicable for a wide range of use cases and still as low as necessary
to support the operation purpose of BATS.

1.4.1 Answering Biologists Questions

Possible answers to questions in biology, which are explained in chapter 2, can be
categorized into several solution strategies.

Solving questions depending on the position of bats, e.g. whether they show territorial
behavior or which places they avoid, can be supported by providing several visualizations
of position data. Heat maps and local convex hulls as well as maps for the average
velocity in an area are implemented in the prototype to this end. They are introduced in
the fundamentals in chapter 4.

Detecting events and activities allows to examine certain aspects of hunting and social
behavior. The occurence and frequency of events as well as their order can help biologists
on this matter. The availability of abstract activities improves the previous categorization
of resting, activity and unknown drastically.

Some questions can be solved by correlating conditions or rather external and internal
influences of the animal to activities. Examples for external influences are weather
conditions, brightness and time. Internal influences could be how saturated an animal
is or whether it drank enough water. The topics supported by this correlation are
for example lunaphobia, whether bats have a personality and whether they memorize
previous water places as well as foraging areas in order to return to them. The techniques
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to predict activities can be re-used for this purpose, since predictions also correlate
influences to past behavior.

All mentioned analyses are depicted in chapter 7.

1.4.2 Live Analysis

Since the sensor network is going to collect several streams of sensor data, continuously
processing the incoming streams suggests itself. The data stream and complex event
processing models are suitable for such a scenario. Those models especially consider
time and order, which is also useful to answer several questions of biologists. In order
to provide adequate notations for different tasks, data stream processing and complex
event processing are both used and need to be integrated.

After assessing several systems, the model of PIPES was chosen because its operators
are well-defined and the model emphasizes time. Esper clearly had influence on the
notation in chapter 5 and integration of complex event processing. The fundamentals of
data stream systems are outlined in chapter 4.

1.4.3 Events and Activities

Events and activities are the basis of a big share of the presented analyses and many
more to come. Since they can be used to describe the behavior of an animal, improving
the detection of events and activities leads to an improved and more predictable behavior.
The fundamentals are explained in chapter 5.

Events and activities have to be detected in a position data stream. Since a data
stream processing approach was chosen, data stream operators need to be provided to
interpret continuous queries as events. Notations and operators need to be supplied to
aggregate events to compound events and observed activities.

Domain experts should be able to model events and activities. Since the presented
techniques should enhance the understanding of the behavior of bats and other species,
known descriptions may change over time. Therefore, the employed notations should
allow easy modifications of event and activity definitions.

In order to directly exploit an enhanced understanding of the behavior of bats, activities
should get predicted by the prototype. A more accurate knowledge of the relations between
both the lengths and regions of activities leads to better predictions.

Predictions have different applications. They can support experiments by suggesting
future regions to be recorded. For example, if hunting in a certain area is predicted in
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advance, cameras and microphones may be moved to that area in order to record it.
Moreover, it is possible to use predictions in order to activate already prepared recording
equipment or to trigger experiments. Finally, techniques to predict the behavior can also
help answering some of the biologists questions.

The fundamentals of predictions are explained in section 4.4 and the approach taken
is elaborated in chapter 6. Chapter 8 covers the actual implementation of the detection
and prediction. Since in the prototype predictions happen in a data stream processing
context, their integration is outlined in section 8.5.

1.4.4 Operators

The prototype was implemented in the data stream and complex event processing context.
Detecting and further processing events and activities as well as providing certain analyses
to answer questions of biologists and other stakeholders requires several operators in
these models.

In section 8.3 it is elaborated which operators of the data stream and complex event
processing domain are necessary. Some analyses may require extended stateful operators
which are explained in detail. If it is possible to translate or approximate new operators
to use their behavior in other data stream systems, then such a translation should get
outlined.

Since the urgency of results depends on the biologists question being asked, some
analyses need real-time processing whereas others do not. For example, showing the
current positions of all monitored bats emphasizes on the word current. On the other
hand, a summary of past activities or finding home ranges does not require instantaneous
answers. Section 8.3 covers real-time requirements on analyses and implementation
details.

1.4.5 Simulation

Since the sensor network monitoring bats is not yet deployed, the techniques presented
have to be evaluated on synthetic data.

The behavior of bats in a simulation framework was enhanced with activity-induced
actions in order to move closer to actual bat behavior and to avoid clearly random
movement. Parameters need to be provided to support the evaluation of the presented
techniques. The changes are outlined in section 8.2.
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1.4.6 Evaluation

Many techniques to model, detect and predict activities as well as to visualize and further
analyze position data streams are presented in the following chapters. Moreover, one of
the main objectives is to asses the impact of data quality and availability of the z-axis on
different analyses. Chapter 9 evaluates the techniques and analyses with an emphasis on
detection and prediction of activities as well as the impact of data quality on analyses.
The evaluation is performed on synthetic data streams.
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The primary goal of the DFG research group 1508 (BATS) is “to gain fundamental
insight into the design, construction and operation of resource-scarce, heterogenous,
intelligent networks consisting of static and mobile sensors” [DFG13]. The scope of this
thesis covers data analysis and data management in the context of BATS.

The following subsections give a more detailed view on the animals being tracked,
explicitly mention which questions and hypotheses biologists want to investigate and
outline the infrastructure which is developed to support biologists in finding the answers.

2.1 Greater Mouse-Eared Bat

The greater mouse-eared bat or Myotis myotis is one of the common bat species in central
and southern Europe [RLH09]. Figure 2.1 shows one snapshot of this nocturnal mammal
which prefers forests as its most important foraging habitats. The greater mouse-eared
bat is a relatively large bat species. Its weight ranges from 28 to 45g and its wing-span
is around 40cm [NAB, RLH09]. Myotis myotis primarily hunt flightless ground beetles
in woodland. Their size and weight allows to attach around two grams of tracking
equipment.

Bats and especially greater mouse-eared bats were previously examined and observed
concerning activity, food spectrum, hunting and more [RLH09]. There are still many
open questions which are not limited to those presented in section 2.2. The available
domain knowledge helps in simulating, detecting and categorizing behavior and can also
be used as a check whether known facts and measured results are consistent.

The common approach to monitor bats and other species is radiotelemetry [ADMW09],
which was also used in [RLH09]. This is an improvement over previous mainly descriptive
studies. However, the current approach is labor-intensive and measured positions
are rather imprecise. It allows important analyses on movement and home ranges.
Nonetheless, increasing precision, the amount of tagged animals, measurement periods
and measurement frequency allows to further dig into the behavior.
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Figure 2.1: Myotis myotis [Deu, edited]

2.2 Questions in Biology

Biologists have several assumptions on the behavior of bats and hypotheses on probable
behavior. As soon as some of the statements are verified or invalidated, inevitably more
questions and assumptions on behavioral patterns will arise. Hence, this section can only
consist of a current snapshot of motivating questions in the hope that many more will
emerge.

2.2.1 Expected Behavior to be Validated

The following behavioral patterns are assumed to be true, although they still need to be
validated.

1. Hunting
A bat flies in a straight trajectory avoiding trees and scrub. As soon as it hears a
suspicious noise, it changes its direction to close in. It lands on the ground to grub
for the suspected beetle.
Successful Catch: The bat flies straight up and circles in the air while consuming
its prey.
Failure: The bat flies straight up and resumes hunting.

10



2.2 Questions in Biology

2. Memory
Bats memorize previous water places and foraging areas and return to them.

3. Avoidance of open places / Navigation
Bats need various obstacles to orient, hence they fly in their vicinity.

4. Drinking
Bats frequent ponds in the forest to quench their thirst.

2.2.2 Probable Behavior

Some characteristics of bats are only suspected. Since the sensor network of BATS
gathers a lot more position and other contextual data than the previous approach, it
should now be possible to answer these questions:

1. Lunaphobia
Does the behavior of bats depend on the visibility of a full moon?

2. Personality
Do bats have personalities? Do conservative or wild bats exist?

2.2.3 Hypothetical Behavior

The following topics are highly speculative and to find answers should now be possible.

1. Social behavior
At what age do bats start to engage in social activities?

2. Territorial behavior
Do bats avoid the territory of another bat? Do they show territorial behavior to
other species?

3. Hunting School
Is hunting taught to a bat by its mother? Does the juvenile follow its mother to
observe and learn? Is food brought to a juvenile bat until it starts to hunt for
itself?

2.2.4 Further Requirements

The goal of the prototype is to support biologists in gaining more insights on animal
behavior. This assistance can further be enhanced by meeting the following requirements:
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1. Experiments
There should be certain techniques to support experiments. For example, some
events could trigger the recording with a camera or microphone.

2. State-Of-The-Art Analyses
Some analyses need to be integrated into the prototype, e.g. heatmaps and local
convex hulls. Moreover, adding more analyses should not take too much effort.

2.3 Setup

Since the current approach to monitor bats and other species is labor-intensive and
not suitable for answering all of the stated questions of biologists, the setup of BATS
is proposed. Figure 1.1 on page 2 shows the topology and architecture of the sensor
network. It is comprised of three parts:

1. Mobile sensor nodes attached to the tracked animal

2. Stationary sensor nodes

3. Central station for management and data processing

The mobile sensor nodes are attached to bats and therefore need to be extremely
light-weight to meet the restriction of two grams. The nodes also have to be energy
efficient, since a weight limit narrows the battery capacity. The chosen approach is to
gather positions by signal strength and phase measurements [NHK+14]. The mobile
sensor nodes emit signals to be measured.

A network of ground-based stationary sensor nodes combines measurements to position
hypotheses. Moreover, stationary sensor nodes are an interface to both mobile sensor
nodes and the central station. Additional sensors can be attached in order to measure
environmental data, e.g. temperature, humidity and brightness.

A central station is a common desktop or laptop computer communicating with the
stationary sensor nodes. It stores gathered data and executes the presented methods
and techniques to analyze and process position and environmental data streams.

The data exchanged between mobile sensor nodes are the ID of the tracked animal,
encounters with other tracked animals (ID, time) and possibly status information (e.g.
“low battery”).

The communication between mobile sensor nodes and stationary sensor nodes can be
divided into two classes: Stationary sensor nodes receive the ID of a tracked animal as
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well as field strength and phase to measure positions and relate them to the appropriate
animal. They also exchange clock data, encounters between animals and other sensor and
status data gathered on mobile nodes. Stationary sensor nodes preprocess and forward
data to other stationary sensor nodes and the central station. Examples of forwarded
data are animal positions as well as sensor data emitted from sensors attached to the
stationary sensor nodes. Attached sensors could measure the temperature, humidity,
brightness, noise as well as other environmental data.

A disadvantage of the proposed approach is that positions for animals out of range of
the stationary sensor nodes can not be measured. However, radiotelemetry has the same
problem. Since GPS reception is poor in forests [RPÁTSA+13] and available sensors have
too much weight, changing position gathering to use GPS sensors is also not reasonable.
Further miniaturization of sensors and integrated circuits certainly will allow to solve
this problem in the given weight restrictions.

On the other hand, a big advantage of this setup is that it can measure positions
and environmental data continuously 24/7. Compared to the prevalent approach of
radiotelemetry for this purpose, it requires less manual work. Position measurements by
domain experts are replaced by less time-consuming maintenance work of e.g. swapping
batteries now and then. Of course, the tagging of animals ist still necessary and not
automatized. As long as stationary sensor nodes are available, position measurements
are possible even in forest areas without any GPS reception.

As soon as this approach is deployed and debugged in the field, an obvious optimization
to work assignments also processes data on stationary and mobile sensor nodes in order
to reduce the amount of exchanged data. Less data transmissions leads to a reduced
energy consumption.

2.4 Summary

This chapter gave a more detailed view on the scenario in which position data streams have
to be analyzed and processed. The bat species to be monitored, the greater mouse-eared
bat, is introduced and biologists questions on its behavior are stated explicitly.

The questions can be categorized into several solution strategies. The first group
comprises questions depending on the position of bats, e.g. whether they show territorial
behavior or which places they avoid. Aspects of hunting and social behavior are in
the group of questions solved by detecting events and activities. The availability of
activities can also improve answers to questions in the first group. The last group
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contains questions to be solved by correlating conditions or rather external and internal
influences of the animal to activities, e.g. finding out whether bats have lunaphobia or
whether they memorize previous water places and foraging areas.
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3 Related Work

Some of the questions described in the last chapter have already been stated for different
species with varying size and other types of objects, e.g. cars and pedestrians. Different
limitations on size of the equipment and how to gather position data yielded different
approaches to answer the questions of domain experts.

There are similarities between the presented projects and BATS on the requested
analyses and how to further aggregate position data to behavior. Aspects of the im-
plementation, for example integrating data stream and complex event processing, have
also been assessed and tried before. Moreover, there are many different approaches to
interpret trajectories and how to enrich them with semantic information.

3.1 Tracking Animals

Many projects tracking animals have been designed and deployed in the past. Some
projects are shortly presented. Of course, there are huge differences in the approach to
answer questions concerning both the size and amount of available sensors.

Livestock

The main intent of [GCP+06] is to understand the behavior of livestock in order to
control it by certain stimuli. Previous attempts for cows and deer clearly showed that
those animals respond to control signals, e.g. electric shocks and noises. However, they
did not respond as expected, since the assumptions were not backed by knowledge on
the behavior. For example, cows ran straightforward with their heads shaking or went in
circles while the stimulus was applied.

In order to change that, a collar with a sensor board is attached to some of the cows
in a testbed. GPS information, accelerometer and magnetometer data as well as the
temperature are collected. One important analysis is the classification of the animals
activities, which is also important for BATS. The classification is hierarchical and on
the highest level depends on whether a cow moves. Figure 3.1 shows the classification
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Figure 3.1: Classification of Cow Behavior [GCP+06, edited]

structure. Lower levels depend on roll angle, pitch angle and heading angle as well
as changes of the angles over time. There are some important differences to BATS:
Considering cows are huge, the sensor boards can have a larger size as well and can
locate them by a GPS sensor. Bats are free to fly away to other areas and since their
sensor nodes do not have GPS, some position data may be missing. Moreover, bats can
fly and trajectories are no longer 2-dimensional.

Badgers

In [DEM+12] badgers are tracked. They are an order of magnitude smaller than cows
and therefore need smaller tracking collars, in this case active RFID tags. Detection
nodes are spread throughout the woods at key locations around known badger setts and
latrines. Additionally, sensor nodes monitoring microclimatic conditions are deployed
within badger foraging areas. The goals of this project can be categorized into two fields.
On the infrastructure side, the focus is on the process to design, deploy and maintain a
sensor network. The goals of zoologists involved were to gain knowledge in movement
patterns, social interactions and the correlation of badger activity with night-length.
Movement patterns in [DEM+12] are sightings of badgers at sensor nodes during the
day. Sightings were combined to temporal density plots for sensor nodes near setts,
latrines and altogether. Social interactions in different situations, e.g. for setts and
latrines, are recognized in a weighted social graph. The weight represents the time of
contemporaneously being spotted at detection nodes. Communities are detected with an
algorithm presented in [BGLL08].

The setup is similar to BATS. Sensor nodes are directly attached to the animal and
positions are measured by stationary sensor nodes. They split the stationary sensor
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nodes of BATS into detection nodes and sensor nodes gathering environmental data.
Instead of a central station they provide a 3G link and use biologists vehicles as mobile
sinks.

Optimizations are performed in stages taking turns on the hardware and software side.
They present and evaluate adaptive sensing in simulations and actual field tests. They
also demonstrate the impact of hardware improvements on software optimizations. The
evolution of the project led to cost reductions from 372.50 USD to 10.30 USD on average
to monitor one badger for four weeks. The costs to get to the woods tagging animals is
higher than the maintenance costs.

[DEM+12] concludes that it is important to continually collaborate with domain
experts. Rapid prototyping and gradually improving hardware and software proved to
be a successful approach to build their sensor network. They advise to pay attention
to network maintenance costs from the beginning. The emphasis of the paper lies in
the sensor network. However, the zoologists goals and presented analyses are also good
examples for analyses on position data streams.

Rats

In [TOBW08, OTBW08, LTM06, BLBGW10] rats are monitored. Rats live in under-
ground burrows, hence radio propagation is rather limited. The setup contains sensor
nodes attached to the animals and base stations to collect data. Base stations are placed
at the exits of the rat burrow. As soon as a rat passes one, the measured data on the
mobile node is transmitted to the base station. Mobile nodes (“Ratpacks”) need to be
small and light-weight to fit on a rat and not restrict the animal in its natural movements.

Biologists wanted to investigate several phenomena. They wanted to gain insight into
social interactions of rats, thus answering the questions when, where and how long rats
meet. Acceleration sensors described the motion and social behavior of a rat. They also
added microphones to examine vocalizations.

There are similarities to BATS. Both projects focus on size, weight and battery usage
of mobile nodes in order to fit on the animal. It is not assumed that animals always
connect to base stations or stationary nodes. Encounters of animals are detected and
data is exchanged between mobile nodes.
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3.2 Detecting Events and Activities

The approach to detect events and activities outlined in chapter 5 is similar to existing
techniques.

3.2.1 MavEStream

In [JAC07, CJ09] data stream processing and complex event processing are integrated.
Data stream systems and complex event processing systems both operate on streams,
work in-memory and emphasise on temporal locality either with windows or consumption
modes. Their biggest differences lie in the semantics of the models. MavEStream
cascades the output of regular data stream processing interpreted as an event into an
event processing engine. Their approach is outlined in figure 3.2.

Stage 1 in this model corresponds to a general purpose data stream management
system. Afterwards, so called computed events are generated in Stage 2. Those computed
events are defined by regular continuous queries in the data stream processing model,
but are interpreted as primitive events. Hence, Stage 2 serves as a bridge between data
stream and complex event processing. Stage 3 corresponds to a regular complex event
processing. Rule processing, which automatically triggers sequences of actions for specific
alarm types (events) and defined conditions, is usually part of the CEP system and
referred to as Stage 4.

If an application domain benefits from both models, which undoubtedly is the case with
BATS, then the presented approach allows to use a proper notation for each abstraction
level or stage.

Nonetheless, some integration issues remain. The event generation out of data streams
allows huge amounts of computed events, which cannot be anticipated by CEP engines
[JAC07]. Moreover, the timestamp of computed events are an important implementation
decision, since one computed event may be derived by a large group of data tuples.
Integrating both models may result in separate programs which need to communicate.
Therefore, address space issues emerge. Stage 2 is either a separate middleware or added
to the address space of one of both systems to be integrated. In any case, common
data structures and Inter Process Communication (IPC) or Remote Procedure Calls
(RPC) have to be taken into account. The obvious solution to this problem combines
both systems and the middleware in one address space. However, this depends on the
availability of source code or object files as well as licensing.
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is detected or propagated to form a composite event. Thus,
events are detected based on the best-effort method. On the
other hand, QoS support in a data stream processing model
is necessary and critical to the success of data stream man-
agement systems (DSMSs). A large body of work addresses
various QoS requirements such as tuple latency, memory us-
age, and throughput.
Optimization and Scheduling: Event expressions can be
represented as event graphs for detection. Common event
sub-expressions are grouped in order to reduce memory us-
age, overall response time, and computation effort. In gen-
eral, event processing does not deal with runtime optimiza-
tions. On the other hand, efficient approaches for process-
ing CQs are important to a DSMS. The concept of queues
and windows in a DSMS introduce even more challenges
and opportunities for query optimization. Optimizations in
stream processing model include: 1) sharing of queues (in-
puts) among multiple operators, 2) sharing of windows (syn-
opsis), 3) sharing of operator computations, and 4) sharing of
common sub-expressions. The notion of scheduling is also
absent from event processing systems. Typically a data-flow
architecture (implicitly, a First-In-First-Out scheduling strat-
egy is employed in event processing models) is assumed as
indicated earlier and memory usage or event-latency has not
been addressed in the literature. On the other hand, optimiz-
ing memory capacity, tuple latency, and the combination of
the two have prompted many scheduling algorithms [5, 9, 31]
in stream processing.
Buffers and Load Shedding: None of the event processing
systems assume the presence of queues between event oper-
ators. Events were assumed to be processed as soon as they
are detected (not necessarily occurred) and partial results are
maintained in event nodes. Unlike stream processing, most of
the event processing models assume that the incoming events
are not bursty and hence usually do not provide buffer man-
agement or explicit load shedding strategies. Event consump-
tion modes can be loosely interpreted as load shedding, used
from a semantics viewpoint rather than QoS viewpoint. On
the other hand, load shedding is extremely important in a
stream processing environment. Even with the choice of the
best scheduling strategy, it is imperative to have load shed-
ding strategies as the input rates can vary dramatically. Sev-
eral load shedding strategies, placement of load shedders, and
the amount of tuples to be shed (possibly limiting the error in
query results) have been proposed [4, 15, 39].
Rule Processing: Extant event processing systems support
dynamic enabling/disabling of rules. On the other hand, rule
execution semantics specifies how the set of rules should be-
have in the systems once they have been defined. A rich set
of rule execution semantics [10, 40] have been proposed to
accurately define and efficiently execute rules in the litera-
ture for event processing models. Those semantics include
rule processing granularity, rule execution (instance/set, itera-
tive/recursive, and sequential/concurrent), conflict resolution,

coupling modes, and termination. Stream processing systems
do not support rule specification and processing, which are
critical to many real-world applications.

With our extensions to the event processing proposed in
this paper, current rule processing techniques have to ex-
tended as well [28]. We do not explore this further in this
paper due to lack of space.
Summary: Although two models share similar inputs and
processing models, there are a number of differences among
operator semantics, contexts, processing requirements, and
emphases/purposes on inputs/outputs, computation, and final
goals. Eventually, a number of extensions have to be made
on the event processing side to accommodate high input rates
and QoS requirements. Some extensions need to be made on
the stream side to generate events (changes/values of inter-
est) which are less in number as compared to stream output
and are meaningful. In this paper, we are taking a small step
(Please refer to [28] for more details) in the form of extending
the window concept with a more powerful semantic window
to integrate two computation models. Also, we have provided
constructs for defining streams as events, event masks, and
addressed architectural issues of coupling the two models.
We have proposed stream modifiers and are currently work-
ing on applying semantic window in lieu of contexts, queues
and scheduling for events.
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3 MavEStream: An Integrated Model

The proposed integrated model, termed MavEStream is
shown in Figure 1 and it consists of four stages: 1) CQ pro-
cessing stage used for computing CQs over data streams,
2) coupling stream output with event processing system,
3) event processing stage that is used for detecting events, and
4) rule processing stage that is used to check conditions, and

Second International Conference on Digital Telecommunications (ICDT'07)
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Figure 3.2: Integration Model of MavEStream [JAC07]

There are huge similarities between MavEStream and the detection of events in the
presented prototype. Computed events correspond to low level events and regular complex
event processing corresponds to the creation of high level events. In the prototype, events
are further aggregated to activities and several extensions are added to simplify the
usage of AI methods. However, MavEStream may as well be used as a backend prior to
activity recognition. The primary goal of this thesis is to analyze and process position
data streams and not integrating data stream and complex event processing.

3.2.2 Deriving Spatio-Temporal Query Results in Sensor
Networks

In [BBBB10] it is determined how to derive spatio-temporal query results in sensor
networks. This appraoch was proposed to be used in moving object databases without
explicitly mentioning data stream systems. However, its different parts are analogical to
low level and high level events restricted purely to position data streams.
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Spatio-temporal predicates, e.g. inside(pos, R) or meet(pos, R), correspond to low
level events. They take the uncertainty of the actual position of an object into account
by returning either true, false or maybe. A satisfied predicate is guaranteed to be fulfilled,
whereas the unsatisfied predicate is guaranteed not to be fulfilled. Maybe is returned if
no clear deduction is possible. A region R also is divided into different disjoint subsets:

• The interior RI covers all points within the region.

• The border RB contains all points of the line that delimits the region.

• The exterior RO contains all points which are not in RI or RB.

Points do not have a border. Predicates can use for example the intersections of the
interior, border and exterior between a point and a region to describe their topological
relationship and the predicates disjoint, meet and inside.

Predicates can be combined as a concatenation. The sequence of spatio-temporal
predicates is called a spatio-temporal development. They can be interpreted both as a
high level event, since the concatenation is a simple pattern, and also as an activity.

The notation and vocabulary of [BBBB10] will be used in chapter 5 to describe certain
aspects of high and low level events.

3.3 Tracking Objects

Detecting and tracking objects in traffic is prevalent in driver assistance systems to
provide intelligent cruise control or to warn of a crash or even prevent one. These systems
typically are proprietary and rarely share the same sensors. Deployed in a car they
might even detect the environment independently and redundantly. [Bol11] presents a
framework for the development of advanced driver assistance systems to avoid these
problems.

The framework applies a data stream processing approach. The data model is based
on PIPES (section 4.2), which is also used in this thesis. It has been extended to be
bitemporal. This is necessary, since for example for a prediction the time of the creation
of a prediction as well as the time of the predicted occurence of its content are both
crucial for the interpretation. The time of the creation of the prediction corresponds to
the validity of the prediction since it can overwrite old revisions or be invalidated by
newer forecasts. The predicted time is at least as important as the creation time since
actual measures to be taken depend on it.
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The most important similarity to BATS is adding and updating a state of each tracked
object. In BATS this is important for the detection of activities. This framework detects
objects and adds attributes, e.g. velocity and vicinity. Those attributes are stored in
a context model. Moreover, cycles are allowed by adding a broker operator. They are
defined procedural rather than descriptive to improve modeling and understanding. In
BATS cycles focus on activity detection.

In summary, BATS and [Bol11] both base the data model on PIPES and explicitly
allow state of objects and cycles in queries.

3.4 Semantic Trajectories

Different approaches to model and analyze semantic trajectories have been surveyed
in [PSR+13]. The paper introduces the concepts and definitions surrounding semantic
trajectories and thereby a common vocabulary for depicted techniques. This thesis also
adheres to the vocabulary where possible.

“A raw trajectory is a trajectory extracted from a raw movement track and containing
only raw data for its Begin-End interval.” [PSR+13] Sometimes, raw data of a movement
track is missing, which for example is the case of hardware or software malfunction.
Such an occurrence is called a hole. If this happens for just a short period, then a hole
may be filled, e.g. by interpolation. Furthermore, data may be missing on purpose, for
example if a user switches off his GPS-enabled device or a sensor node on a bat is in an
energy-saving mode. A period of data missing on purpose is called a semantic gap.

Adding additional knowledge to a trajectory is called semantic enrichment. An external
source of knowledge provides contextual data, e.g. a database of terrain features, and is
therefore called contextual data repository. Additional knowledge added to a trajectory
is called an annotation.

Bearing all previous definitions in mind, “a semantic trajectory is a trajectory that
has been enhanced with annotations and/or one or several complimentary segmenta-
tions” [PSR+13].

Figure 3.3 is an example to apply all definitions. The journey starts and ends at
Hotel Zola in Paris. The raw trajectory contains a list of all measured points at its time
instants. It is divided into several segments which were divided by periods of slow or no
movement, e.g. in order to visit points of interest. A database of tourist features acted as
a contextual data repository which linked GPS data from periods of slow/no movement
to points of interest, e.g. the first stop at the Eiffel Tower. Segments of sightseeing stops
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Fig. 1. 2D visualization of a one-day spatial trace left by a tourist visiting Paris (background map downloaded
from Mappery.com, copyright unknown).

and record movement as a field of vectors over this space. Vectors aggregate data from
the individual tracks to represent, for a given instant, some characteristics (usually
speed and direction) of the movements at every position in space. An application willing
to globally analyze the flow of objects moving between a discrete set of points (e.g.,
popular places within a city) will aggregate individual movement tracks into edges
between nodes of a flow network. For example, Orellana et al. use movement tracks,
fields of vectors, and flows for analyzing people’s movements in recreational areas
[Orellana et al. 2009]. There are also movement analyses that do not rely at all on
movement tracks (e.g., analyses of movement of body parts such as eyes or hands).
To keep our survey focused, we do not address these alternative views of movement,
nor do we address deformation issues raised when considering moving objects, such as
hurricanes and oil spills, that span over a changing area or volume. We focus instead
on movement tracks of moving objects represented as moving points.

Figure 1 and Figure 2 convey possible representations of the track left by a tourist
visiting Paris during one day. The three vertical segments in the trace in Figure 2
(inspired by the work of Hägerstrand [1970]) correspond to the tourist stopping in a
place for a temporal duration proportional to the length of the segment.

2.1. From Movement Tracks to Trajectories
Many applications are not interested in keeping and analyzing exhaustive 24/7 records
of movement. They rather choose the segments they are interested in. We call trajec-
tories the segments of the object’s movement track that are of interest for a given
application. In the tourist example, to globally analyze the activities performed by a
tourist during his/her stay in Paris, the whole track left by the tourist in Paris will be
taken as a single trajectory (spatial criterion “inside Paris”). To analyze what tourists
do in one day in Paris, or what they do on specific days (e.g., on Sundays), each daily
track of a tourist in Paris will be taken as a separate trajectory (see Figure 1).

Figure 3 shows (as a dotted line) a section of the movement track of a moving
object and, superimposed as a continuous line, two subsections identified as relevant
trajectories. Each trajectory is identified by two specific spatio-temporal positions of
the movement track, called the Begin and the End of the trajectory: They are the first
and the last positions of the object for this trajectory [Spaccapietra et al. 2008].

ACM Computing Surveys, Vol. 45, No. 4, Article 42, Publication date: August 2013.

Figure 3.3: 2D Visualization of a One-Day Spatial Trace Left by a Tourist Visiting
Paris [PSR+13]

were annotated with the corresponding sights. The whole annotated and segmented
sightseeing tour is the resulting semantic trajectory.

Semantic trajectories in the following chapters are represented by events. Segments
likewise are events, too. However, in order to match the definition of hard segmentation
without overlaps in [PSR+13], the corresponding events have to be explicitly defined for
this purpose. Annotations for semantic trajectories are equal to annotations for events.
A database of user-defined regions, e.g. watering places or areas with special terrain
features, streams of sensor data as well as implicit contextual data in event and query
definitions act as a contextual data repository. Of course, the prototype may be extended
to other data sources.

Several techniques in [PSR+13], e.g. trajectory map-matching, are currently neither
implemented in nor relevant to the prototype. Since requirements change over time, the
survey may prove to be a helpful source of information to cope with a new situation in
the future.

22



3.5 Summary

3.5 Summary

This chapter introduced several approaches to animal tracking. The size of observed
animals and thereby the possible and deployed size of attached sensor nodes varied
considerably. Moreover, movement patterns ranged from rats living in underground
burrows to fenced cows as well as to badgers which were allowed to move without restraint.
Different requirements yielded different solutions which were tested in practice. The
applicability of aspects and solutions to BATS were outlined for each project.

The approach of [Bol11] to track objects in driver assistance systems shares similarities
to the prototype described in the following chapters. The data model is based on PIPES.
However, the most important similarity to BATS is adding and update the state of each
tracked object. The broker operator supports cycles in data stream processing.

Detecting and further processing events in a data stream processing model requires to
integrate complex event processing. The approach of MavEStream was presented and
compared to the solution in the prototype. Since events and activities are mostly aggre-
gated out of position data streams, some of them resemble spatio-temporal predicates.
[BBBB10] determines how to derive spatio-temporal query results in sensor networks.
The notation is adopted for descriptions.

Finally, definitions and concepts in the survey [PSR+13] on semantic trajectories were
outlined. The vocabulary as well as surveyed ideas are incorporated into the following
chapters and the prototype.
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This chapter introduces the fundamentals of the solutions elaborated in the following
chapters. First of all, data stream systems and examples for both prevalent flavors are
presented. Important characteristics of the examples PIPES for the data processing
model and Esper for complex event processing are highlighted, since they had severe
impact on the prototype. They are followed by explanations of several techniques
of machine learning in order to allow predictions of behavior. Finally, visualization
techniques requested by biologists are described.

4.1 Data Stream Systems

A data stream system (DSS) consists of a data stream management system (DSMS), data
stream definitions and stored continuous queries. Continuous queries provoke data stream
systems to process incoming data immediately in order to produce an output stream.
They work on transient data and relational data stream systems interpret streams as a
sequence of tuples. A DSMS manages schema definitions of incoming streams as well as
continuous queries and offers access protection. Similar to DBMS, DSMS are typically
built paying attention to application independence. [MW13]

Currently, there are two main flavors in this area: Data stream processing and complex
event processing (CEP). These two models have a lot in common on how they work.
Differences lie mostly in their origins, vocabulary and main use cases.

Data stream systems can be considered as an evolution to traditional database systems.
They process streams of different sources to new data streams as output [CM12]. The
query languages mostly are designed to resemble SQL and many transformations work
alike. On the other hand, complex event processing regards incoming data as events
happening in the external world. These events have to be filtered and combined in order
to find underlying higher-level events [CM12]. Hence, pattern matching of events is the
main goal which surfaces in the supplied APIs and query languages.
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Since some use cases – including BATS – can benefit from both models, there have
been attempts to integrate them. One example of this integration is MavEStream, which
was explained in section 3.2.1.

Apart from different names, many operators of the relational world are used in DSS as
well. Some non-blocking operators in DBS are already implemented in a stream-oriented
way to speed up processing. For example, projection or selection can be applied during
the retrieval of a relation. Blocking operators, for example aggregation and join, have to
be revised.

Continuous queries require operators to emphasize on time and order. For the data
stream processing context, the Window operator has been added to fulfill this requirement.
It captures temporal locality, either time-based or count-based. For example, a window
allows to return the velocity of an object by using two subsequent positions in a stream.

By using windows, blocking operators are once again possible. For each time instant,
only a finite amount of tuples has to be processed. Of course, this leads to redefined
semantics of blocking operators. For example, aggregations are processed according to
window definitions for each time instant instead of one final value as a result. The output
of a join is returned regularly and only infinite windows and infinite main memory allow
to fully join two infinite streams.

[CM12] examines data stream processing and complex event processing systems in
detail with respect to functional and processing models, deployment as well as offered
operators.

4.2 PIPES

One important example of a data stream system is PIPES [Krä07a, Krä07b]. The
model was chosen for the prototype, since its operators are well-defined and the model
emphasizes on application time. The stream representations enable arrival of elements
at the same time instant. Even concurrent identical elements are anticipated.

4.2.1 Stream Representations

In [Krä07a] several stream representations are introduced in order to use for each situation
the most convenient definition. Raw streams are input streams registered to the system.
Internal representations are divided into physical and logical streams. Transformations

26



4.2 PIPES

from raw to logical and physical streams as well as physical to logical streams are provided
to ensure semantic equivalence of the definitions.

Raw streams are potentially infinite sequences of elements (e, t), whereas e is a tuple
and t an associated timestamp. They are non-decreasingly ordered by timestamps. Raw
streams are divided into base streams, i.e. streams which act as an input to logical and
physical plans, as well as derived streams which are output streams of logical and physical
operators [Krä07a, MW13].

Logical streams are order-agnostic multiset representations of raw or physical streams
and emphasize on the validity of tuples at time-instant level [Krä07a]. They are a
potentially infinite multiset of elements (e, t, n) whereas e is a tuple, t is an associated
timestamp and n is the multiplicity of the tuple.

Physical streams are a more compact representation of their logical counterpart. They
are a potentially infinite multiset of elements (e, [tS, tE)), whereas e is a tuple and [tS, tE)
is its time interval.

4.2.2 Snapshot-Reducibility

In order to apply algebraic query optimizations already known from relational operators,
data stream operators can be analyzed in regard to whether they resemble the behavior
of a relational, non-temporal counterpart for each time instant [Krä07a].

A snapshot of a logical stream Sl at a time instant t can be considered an instantanious
relation which represents the bag of all tuples of Sl valid at the time instant t. The
timeslice-operator τ computes the snapshot of Sl [Krä07a].

S1,...,Sn

opS

��

τt
// R1,...,Rn

opR

��
Sout τt

// Rout

Figure 4.1: Snapshot-Reducibility [Krä07a]

Figure 4.1 sketches the definition of snapshot-reducibility. A stream-to-stream operator
opS with the inputs S1,...,Sn is snapshot-reducible, iff at any time instant t the snapshot
of the results of opS is equal to the results of applying its relational counterpart opR to
the snapshots of the inputs S1,...,Sn at the time instant t [Krä07a].
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4.2.3 Data Stream Operators

PIPES provides many operators to use in continuous queries. Filter corresponds to its
relational counterpart selection. Map covers the relational projection as well as replacing
or creating attributes which values may depend on the content of the mapped tuple.
Mapping does not affect the timestamp.

The semantics of cartesian products and thereby joins are different from the relational
world. A cartesian product combines elements of both input streams whose tuples are
valid at the same time instant.

PIPES provides time-based sliding windows as well as count-based sliding windows.
Furthermore, count-based sliding windows can also be partitioned.

4.3 Esper

Esper [Espa] is a great example for the second flavor of data stream systems, complex
event processing. It can be considered the leading open-source CEP provider [CM12].
Esper is available as a standalone application. Libraries are also available to embed it in
a Java environment (Esper) or .NET (NEsper) [Espa].

The Event Processing Language (EPL) is a rich declarative language for rule speci-
fication which is part of Esper [CM12]. It provides patterns for logical and temporal
event correlation, among others conjunction, disjunction, sequence and negation. An
important operator in EPL is every. A pattern without it stops looking for matches as
soon as one is detected. Every enforces to keep looking for matches. Furthermore, Esper
provides event consumption. If an event was consumed, it is no longer available for other
patterns to match.

Esper supports a subscription-based delivery to listeners (push) as well as a receive-
based delivery using iterators (pull) [Espa].

Some of the notation in chapter 5 is borrowed from EPL.

4.4 Techniques in Machine Learning

There are several approaches in the field of machine learning which can also be applied in
the present scenario. Hidden Markov models are introduced in order to present similarities
between problems in BATS and solved problems in HMMs. Bayesian networks and
Dynamic Bayesian networks are the basis of behavioral predictions presented in the
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following chapters. Since the Kalman filter can improve the accuracy of measured position
data, it is shortly introduced as well.

4.4.1 Hidden Markov Models

A Hidden Markov Model is a doubly stochastic process that models both actual states
and observable emissions. The states, as the name suggests, are hidden. Moreover,
transitions between states are a regular Markov model. The emissions are observed with
a certain probability depending on the actual state. Hence, the actual states can only
be observed through the emissions or rather through another set of stochastic processes
[RJ86].

This short description of a Hidden Markov Model matches the situation of detecting
certain activities or states of e.g. a bat by looking at some available sensor data. It may
not be possible to observe the actual thought process and current state of an animal. But
the results of this thought process, the actual behavior, is observable. Furthermore, the
thought process most probably not only depends on the last time instant and last state.
Even if it does, the modeled behavior might be dissimilar to reality and not reproduce
this dependency. Hence, giving and updating certain probabilities to observable emissions
and transitions between modeled hidden states allows to approximate the unknown actual
model. Hidden Markov models are applied in many uses cases, for example in speech
recognition, GSM and UMTS.

4.4.1.1 Elements of a Hidden Markov Model

Each model contains a finite set of states Q. Each state possesses some measurable,
distinctive properties [RJ86]. The state is represented by one discrete random variable.
If there is more than one (discrete) random variable, e.g. parallel processes, then some
mega variable, a cross product consisting of all of them, has to be created [RN04].

States are connected by transitions. For each time instant, a new state is entered
based upon a transition probability distribution A only depending on the previous state
[RJ86].

For each time instant, there is one current state and one observation output, emission,
is produced according to a probability distribution B only depending on the current state
[RJ86]. The set of possible emissions V is one discrete random variable. If in reality it is
more than one (discrete) random variable, then one mega variable has to be created. For
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example, the state of the weather may have different outcomes for visibility of the moon
and whether it is raining.

Finally, there has to be an initial state distribution π. A Hidden Markov Model λ can
now be described by λ = (Q, V, A, B, π).

4.4.1.2 The three problems of Hidden Markov Models

An HMM is not created for its own sake, but to solve a problem at hand. Three key
problems of interest in real world applications have been identified [RJ86]:

1. Given an observation sequence O = (O1, O2, . . . , Or) and the HMM λ, what is the
probability of the observation sequence P (O)?
In the context of BATS, this problem is equivalent to finding highly improbable
observation sequences which deserve a closer look.

2. Given an observation sequence O = (O1, O2, . . . , Or), what is the optimal sequence
or rather path of states that is produced by the given observation sequence?
Applied to BATS, this problem is equivalent to identifying behavioral states from
the available sensor data.

3. How should the model parameters A, B, π in λ be adjusted to maximize P (O)?
This problem is equivalent to the main cause of using AI methods in BATS:
predictions. By assuming that past behavior approximates future behavior, the λ

with the highest P (O) for a previous observation sequence O = (O1, O2, . . . , Or)
can be used to predict future Or+1, Or+2, . . . and states.

All of these key problems already have been solved. Finding the probability of a
given observation sequence can be done by using the forward-backward procedure. This
algorithm takes N2T steps, where N is the number of states N = |Q| and T is the
length of the observation T = |O| [RJ86]. In order to find the most likely path of states
producing a given observation sequence, it is possible to apply the Viterbi algorithm
[FJ73, RJ86]. For adjusting model parameters, the Baum-Welch method is a well-known
iterative approach [RJ86].

4.4.1.3 Applicability for BATS

The set of all possible states and all possible emissions has to be represented by one
discrete random variable. A lot of different random variables go into the actual state of a
forest and decision processes of a bat. A small subset of variables could be: time of the
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day, weather, visibility of the moon, availability of food, saturation and thirstiness of a bat,
fatigue, natural enemies and more. Some of these random variables are interdependent.
The random variable for observations also has to include a lot of sensor data in order to
detect as much of a state as possible.

Since the mega variables are cross products of all of their random variables, this
results in huge numbers of states and emissions and enormously big tables for probability
distributions for transitions and observations. A more applicable solution is presented in
section 4.4.2.

Even though the second of the three problems of hidden Markov models is solved,
its solution is not applicable for identifying activities in BATS. The complexity of the
viterbi algorithm is O(T · |N |2), whereas T is the length of the observation and N = |Q|
is the number of states including emissions. N is highly dependent on the number of
possible positions and thereby on the size of the observed area as well as the precision
of measurements. Hence, the solution does not scale well with the observation area.
The next chapter emphasizes on the notation of several abstraction levels to detect
events and activities. Events can be considered to be an aggregated view of observations.
Nonetheless, the implementation of activity detection takes advantage of the proposed
notation of activities.

4.4.2 Bayesian Networks

Bayesian networks exploit the fact that some random variables in a model often are
independent or slightly dependent on other random variables. They are based on Bayes’
theorem: [HKP11]

P (H|X) = P (X|H)P (H)
P (X)

A Bayesian network is a directed acyclic graph in which every node is labeled with
information on its probability distribution. It consists of the following elements: [RN04]

1. Nodes: A set of discrete or continuous random variables.

2. Edges: A set of directed edges connecting two nodes X → Y .
Y is dependent on X, X is a parent node of Y.

3. For every node Xi there is a conditional probability distribution P (Xi|parents(Xi)).

A conditional probability table (CPT) represents a conditional probability distribution
of discrete random variables. If in a CPT all used random variables are measurable, the
CPT can be generated automatically.
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Typically, modeling of Bayesian networks is done by educated guesses on dependencies.
[RP87, CH92] present approaches to automatically build the structure of Bayesian
networks from statistical data.

4.4.2.1 Example

Figure 4.2 shows a basic Bayesian network with CPTs for all random variables. The
Bayesian network represents a scenario in which a delinquent (Joker) frequently commits
crimes. An alarm system (BatSignal) has been deployed to quickly mobilize massive
police forces and special operations (Action). The alarm sometimes fails. Since special
operations focus on the delinquent, they are more successful in mobilizing forces if he is
operating.

Of course, the Bayesian network can be used to calculate probabilities for each random
variable:

P (J) = 0.3
P (S) = P (S|J)P (J) + P (S|¬J)P (¬J) = 0.34
P (A) = P (A|J ∧ S)P (J ∧ S) + P (A|J ∧ ¬S)P (J ∧ ¬S)

+ P (A|¬J ∧ S)P (¬J ∧ S) + P (A|¬J ∧ ¬S)P (¬J ∧ ¬S)
= P (A|J ∧ S)P (S|J)P (J) + P (A|J ∧ ¬S)P (¬S|J)P (J)

+ P (A|¬J ∧ S)P (S|¬J)P (¬J) + P (A|¬J ∧ ¬S)P (¬S|¬J)P (¬J)
= 0.35

BatSignal S
Joker T F

F 0.1 0.9
T 0.9 0.1

BatSignal Joker

Action

Joker J
T F
0.3 0.7

Action A
Joker BatSignal T F

F F 0.05 0.95
F T 0.8 0.2
T F 0.2 0.8
T T 0.95 0.05

Figure 4.2: Bayesian Network: Fighting Crime in Gotham City
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It can also be used the other way around, e.g. finding the probability of the delinquent
operating dependent on whether the alarm went off:

P (J |S) = P (S|J)P (J)
P (S) = P (S|J)P (J)

P (S|J)P (J) + P (S|¬J)P (¬J) = 0.34

4.4.2.2 Dynamic Bayesian Networks

Bayesian networks describe conditional dependencies between random variables. Dynamic
Bayesian Networks (DBN) extend Bayesian networks with time and allow more compact
representations of states and CPTs than hidden Markov models. A DBN consists of
three types of probability distributions: [RN04]

1. Unconditional (initial) probability distribution of state variables X: P (X0)

2. Conditional probability distribution for transitions between states: P (Xt+1|Xt)

3. Sensor Model for Emissions E: P (Et|Xt)

Hidden Markov models are a special case of a Dynamic Bayesian network. All DBNs
can be transformed into HMMs [RN04]. Chapter 6 uses Dynamic Bayesian networks to
model predictions of activities.

4.4.3 Kalman Filter

The Kalman filter [Kal60] allows to improve measured data over time. Instead of emitting
single measurements, the Kalman filter uses a series over several (imprecise) state vectors
to generate an estimation of the actual state vector [Bol11]. The state vectors contain
continuous random variables, for example positions or velocity.

A state transition model as well as a sensor model for measurements has to be supplied.
The state transition model covers the underlying physical process to be observed and
the sensor model contains assumptions on noise [RN04]. Hence, the Kalman filter can
be viewed as a Dynamic Bayesian network with continuous state transitions.

The Kalman filter may be useful for BATS in order to improve measured position
data. Important state variables are the position Xt, the velocity Ẋt and the measured
position Zt. Figure 4.3 depicts a state transition and sensor model for this scenario. An
estimated position for the time instant (t + ∆) using the actual position and velocity at
time t can be written as the following equation: [RN04]

Xt+∆ = Xt + Ẋt∆
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Ẋt Ẋt+1

Xt+1

...

...Xt

Z t Z t+1

...

...

Figure 4.3: State Transition and Sensor Model of Position Data [RN04]

The Kalman filter uses this model to find Ẋt and Xt which resemble the measured
values Zt most closely. Its usage in BATS should be evaluated on real data measured in
the field.
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4.5 Visualization

There are several state-of-the-art methods to visualize position data. This section
introduces heatmaps as well as local convex hulls. Both analyses are provided in the
prototype.

4.5.1 Heatmaps

A simple approach to visualize a table of data is to show it all at once [Yau11]. There
are several types of heatmaps. A heat matrix is a typical grid displayed in colors instead
of values. Figure 4.4 shows an example of a heat matrix. Each cell covers a rectangular
segment in the whole observed area. Measured positions are related to their respective
cell. The number of measured positions in a cell is the value to be visualized.

Figure 4.4: Sample Heatmap Generated by the Prototype

Another common approach are choropleth maps [Yau11]. Instead of rectangular cells,
regions of arbitrary shape are colored. Their typical application is to visualize values
by country on a world map as well as by state, county or other entities. In BATS, the
regions may be user-defined areas in a forest. Figure 4.5 is an example of a choropleth
map. It shows how many German students do a semester abroad per host country.

Interesting points or clusters easily attract the viewers attention in both options.
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1) Nachrichtlich: Deutsche Studierende in Deutschland.
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Figure 4.5: Choropleth of German Students Abroad per Country [Sta13]

4.5.2 Local Convex Hulls (LoCoH)

Estimating home ranges and utilization distributions is an important analysis of po-
sition data in biology. A home range can be defined as “the normal area used by an
animal in its life activities” [ADMW09]. There are several state-of-the-art techniques
to tackle this task, mainly standard kernels, Minimum Convex Polygons (MCPs) and
Local Convex Hulls (LoCoH).

Usually, an MCP has to cover 95% of all data points to define a home range [GFRC+07].
MCPs are widely employed despite providing a poor fit to data when the home range of
an animal or the distribution of a population is strongly non-convex [GW04].

Local convex hulls generalize the MCP method. They are able to identify hard
boundaries, e.g. rivers or cliffs, and converge to the true distribution as the sample size
increases [GFRC+07]. Unlike MCP, they can display holes in the distribution, e.g. an
area within a home range which is unhabitable or avoided for other reasons. LoCoH is a
family of algorithms [GFRC+07, GFR13]:

1. Fixed k-LoCoH (“fixed-number-of-points”) creates hulls from the (k − 1) nearest
neighbors to the root point. It is also known by its previous name k-NNCH
introduced in [GW04].

2. Fixed r-LoCoH (“fixed-sphere-of-influence”) uses all points within a fixed radius r

of each reference point.
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3. Adaptive a-LoCoH (“adaptive sphere-of-influence”) creates hulls from all points
within a radius of a such that the sum of the distances of all points is less or equal
to the radius a.

Figure 4.6 illustrates the results of the mentioned LoCoH methods. Two datasets
are analyzed with k-LoCoH, r-LoCoH and a-LoCoH in several configurations. Clearly,
boundaries as well as holes are detected in most example configurations. Nonetheless,
which of the methods to choose as well as a proper parameter has to be decided by
domain experts.

(a) Sample Data [GFRC+07]

(b) Illustrations of Utilization Distributions
Constructed of Data Set A [GFRC+07]

(c) Illustrations of Utilization Distributions
Constructed of Data Set B [GFRC+07]

Figure 4.6: Sample Data and Illustrations of Utilization Distributions Using LoCoH

An R script for the three LoCoH methods is available at [GFR13]. A newer version of
LoCoH incorporating time - T-LoCoH - is presented in [LTG13].
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4.6 Summary

This chapter presented the fundamentals of solutions which are elaborated in the following
chapters. Data stream systems are introduced, since the prototype adheres to this
approach. PIPES is an example for the data stream processing model. Its data stream
operators are well-defined and it emphasizes on application time. Esper is an example
for the second flavor of data stream systems, complex event processing. EPL is part of
Esper and provides patterns for logical and temporal event correlation.

Some techniques in the field of machine learning were presented. Hidden Markov
models and Dynamic Bayesian networks are introduced in order to provide predictions of
behavior. Using Kalman filters is suggested in order to increase the precision of measured
position data.

There are several state-of-the-art methods to visualize position data. Regular heatmaps
as well as choropleth maps support highlighting several characteristics of the observed
area, for example utilization or velocity. Local convex hulls are used in order to estimate
home ranges and utilization distributions. LoCoH is a family of algorithms. All three
algorithms are shortly explained. A newer version incorporating time is referenced.
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5 Events and Activities

Animal behavior is characterized by certain events and activities. Their detection allows
biologists to test hypotheses on animal behavior and to draw new conclusions.

An event is a message that something happened at a specific point of time or timespan.
If it belongs to a tracked object, it can and should be attributed to it. However, events
not belonging to any object do not need this correlation. Several events attributed to
the same object are allowed to happen at the same time. Events do not need to happen
at every time instant.

This definition of an event allows that atomic events, e.g. entering a region, as well as
behavior lasting for some time, e.g. making a pause, are covered. Since some events for
weather or generally external influences can rarely be attributed to a specific animal,
this correlation is optional and depends on the modeled event. Several simultaneous
events for the same object are allowed, since event definitions may cover different aspects
of behavior.

An activity is more restricted. Every object performs some activity at each time instant.
Two activities cannot be valid for the same object at the same time. A notification of an
activity has to include the related tracked object. Hence, activities allow to model more
abstract, mutually exclusive descriptions of the behavior of an object. A bat can not
hunt and sleep at the same time.

5.1 Motivation

Figure 5.1 shows a possible categorization of bat behavior. It was elaborated in discussions
with biologists. Previous detection techniques allowed to group behavior into the activities
resting, activity and unknown [RLH09]. Being able to model and detect more complex
behavior allows to further examine it, relate actual behavior to external influences,
e.g. environmental conditions, and to predict it more reliably.

Parallelograms in figure 5.1 are supercategories and correspond to previous detections.
Ellipses represent additional activities one level below. Unfolding behavior even more
yields to events which may or may not be interpreted as an activity. For example, in
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Flying

Hunting Transit Drinking

Resting

Pause Sleep

Unknown

NoSignal

HuntingFlight Landing TransitToHuntingHabitat TransitToQuarters Alone

NotAloneSuccess Failure

Figure 5.1: Categorized Bat Behavior

order to hunt, a bat flies through the woods until it hears a suspicious noise. This flight is
interesting of its own, but it is often interrupted by successful or failed catching attempts.

Modeling hunting flights and landings as events allows to still view the whole process
as hunting and to examine short timespans of behavior separately. If a set of events can
be considered to be a more detailed explanation of an activity, then they can be modeled
as subactivities or more generally nested activities. However, this is only reasonable if
all events to be modeled as subactivities really comply with the definition of an activity,
especially mutual exclusion. Otherwise, events can help to describe the characteristics
of an activity, e.g. hunting consists of flights at a certain speed level interrupted by
successful and failed attempts to catch an insect.

Therefore, also sample events drawn as boxes were added to figure 5.1. Additional
semantic information should be annotated to events and activities whenever detectable.
Examples are frameless nodes in the figure, e.g. whether other bats rested at the
same spot or whether a catching attempt of an insect was successful. The events
TransitToHuntingHabitat and TransitToQuarters are a more detailed explanation of
an activity. They do not cover all types or segments of transit flights and are therefore
not modeled as subactivities. Nonetheless, they allow to semantically enrich the transit
activity and support the detection of a transit flight.

Table 5.1 shows a selection of events to be detected in the prototype. Events are
defined if their detection helps answering questions, e.g. on the duration of breaks or the
covered distance and speed of flights, or if they support the detection of activities or other
events. Each event has a name. If several similar alternatives of events are necessary,
e.g. a pause of 30 seconds as well as a pause of 5 minutes, then the corresponding
properties defining each alternative are added as a subscript, for example pausetimespan.
Even though the definition of some events depend on a certain timespan, this attribute is
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only mentioned as a subscript if several definitions of the event with different timespans
are expected.

If an annotation of the event is not part of the description, but rather a partial result,
then the name is formatted as a function and includes this annotation as a parameter,
e.g. enteredRegion(R) where the region R is one important result of the event. The
attached length to paused(L) and other events does not have to be added explicitly if a
start and end attribute are available. However, it is added to the table since the length
is an important partial result of the respective events.

Name Start / End Complex Attached Data
1 pausedtimespan ✓
2 paused(L) ✓ ✓ L: Length
3 flewtimespan ✓
4 flew(L) ✓ ✓ L: Length
5 flewInCircles
6 risenUp
7 wentDown
8 ateInsect ✓
9 enteredRegion(R) R: Region
10 leftRegion(R) R: Region
11 met(X, Y ) X, Y: Bat / ID
12 changedDirection
13 accelerated
14 decelerated
15 flewInSpeedCorridorrange,timespan ✓
16 flewInSpeedCorridorrange(L) ✓ ✓ L: Length
17 slowHuntingF light ✓ ✓
18 highTransitF light ✓ ✓

Table 5.1: Overview of ’Real’ Events

If the timespan of an event is important to its semantics, it is marked in the column
“Start / End”. The decision whether an event is complex or not initially seems to be
rather subjective. All events without a fixed timespan as well as hunting and transit
flights are considered to be complex. The distinction is equal to whether an event can
be expressed in regular continuous queries in a sensible way.

Pausedtimespan is the definition of a pause for at least timespan time instants,
e.g. pause5min. If the timespan is not predefined, then the event paused(L) is sig-
naled after L time instants and L is attached to the event, in this case implicitly by the
start and end time of the event. The same pattern holds for flewtimespan and flew(L).
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A pattern is the description of an event which is comprised of several other events. It
states temporal relations, e.g. sequential, parallel and alternative processes, as well as
temporal conditions, e.g. two sequential events have to happen within a certain timespan
in order to match the pattern.

It was observed that after a bat successfully ate an insect it flies straight up and circles
while eating its prey. The whole process also includes flying to the ground. A simple
pattern consists of the events wentDown, risenUp and flewInCircles. This simple
pattern for ateInsect happens without a fixed timespan and is therefore considered to
be complex.

The events enteredRegion(R) and leftRegion(R) depend on the position of the
tracked object. Both are not considered to be complex although they require memory if
soft discretization should be applied, i.e. if flying at the border of a region should not
fire events of entering and leaving a region.

The event met(X, Y ) can be provided by position streams and additionally by meeting
streams consisting of encounters of mobile sensor nodes. The stream generated by
positions can be compared to the output of mobile sensor nodes for evaluation purposes.

In order to describe slowHuntingF light, highTransitF light and more, the
events 12 to 16 are proposed. ChangedDirection indicates that the direction of
movement changed, e.g. turning to a suspicous noise instead of continuing a straight
trajectory. The acceleration and decelaration of the movement speed are covered by
accelerated and decelerated. FlewInSpeedCorridorrange,timespan events are emitted,
if the movement speed is within a certain range during a fixed timespan. The event
flewInSpeedCorridorrange(L) means the same without posing a restriction on the
timespan.

The events in table 5.1 can be categorized by the marks at the column “Complex”.
All events not marked either have a fixed timespan or only happen at one time instant.
They are considered to be implemented easily with common continuous queries. All
complex events have a variable timespan and even if an implementation with continuous
queries may be possible, it is considered to be at least hard to write. In order to simplify
modeling of those complex events, a different notation will be proposed.
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5.2 Deriving Abstractions

5.2 Deriving Abstractions

The introduced events and activities to model bat behavior have different requirements
and need to be defined on several abstraction layers.

In order to detect simple events, i.e. events that were not marked as complex in
table 5.1, regular continuous queries could be used. For example, enteredRegion(R)
without soft discretization can be implemented as follows: At first, a stream to test
whether a position is inside a region is created for every region. Those streams can be
merged together into one stream, which produces results similar to table 5.2(a). Finding
the regions that were entered only requires to compare region test results of the last two
time instants.

1 create stream EnteredRegion as
2 select tr2.time , tr1.region , tr1.batID
3 from TestRegion tr1 [ range 2s],
4 TestRegion tr2 [ range 1s]
5 where tr1.time < tr2.time
6 and tr1.batID = tr2.batID
7 and tr1. region = tr2. region
8 and tr1.type = "out" and tr2.type = "in";

Listing 5.1: Describing enteredRegion(R) With Hard Discretization in CQL

Listing 5.1 is a sample implementation for enteredRegion(R) in CQL assuming region
tests already exist and are merged as the stream TestRegion. For each time instant,
TestRegion determines whether the current position of a tracked animal is within a
region. A sample result of region tests is depicted in table 5.2(a). It is restricted to a bat
with the ID 42. The two regions R1 and R2 are tested. The behavior of the bat provoking
all sample outputs is depicted in figure 5.2(b). The event leftRegion(R) can be created
by using the same query and swapping the test results “in” and “out”. Table 5.2(c)
shows the result of the query for enteredRegion(R) and table 5.2(d) contains the result
of leftRegion(R).

Clearly, there are events which can be expressed by common continuous queries. From
now on, those will be called low level events. They are implemented as continuous queries
and the corresponding output streams are interpreted as events.

However, not all events can easily be expressed as a common continuous query. For
example, the event ateInsect should detect that a bat successfully hunted and ate an
insect. A known pattern is that after hearing a suspicious noise the bat lands on the
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time type region batID
1 out R1 42
1 out R2 42
2 out R1 42
2 in R2 42
3 in R1 42
3 out R2 42

(a) Sample Merged Region Test

R1

R2

1 2

3

(b) Behavior of Observed Bat

time region batID
2 R2 42
3 R1 42

(c) Sample Output for enteredRegion(R)

time region batID
3 R2 42

(d) Sample Output for leftRegion(R)

Figure 5.2: Sample Outputs for enteredRegion(R) and leftRegion(R) Streams and
Events

ground, grabs the insect, flies straight up and circles while eating its prey. Table 5.1
contains the events flewInCircles, risenUp and wentDown which are now assumed to
be already implemented. The actual situation can be described by a simple concatenation
of events, i.e. ateInsect ::= wentDown ▷ risenUp ▷ flewInCircles.

With actual data, this most probably is no strict concatenation due to waiting
time between wentDown and risenUp and due to imprecise data or event definitions.
Moreover, a timespan is not necessary for the mentioned events and if that is the case
there should be waiting time between all three steps. However, adding reasonable waiting
times until the next event in the concatenation needs to happen is no problem. Listing 5.2
shows a possible query for ateInsect in Esper. The function timer:interval allows
gaps between events.

1 every a= wentDown ->
2 (every (timer : interval (1 min)
3 and b= risenUp (a.batID=batID)) ->
4 (timer : interval (2 min)
5 and flewInCircles (a.batID=batID))
6 );

Listing 5.2: Describing ateInsect in Esper

From now on, events that can be described by patterns of other events are called
high level events. Their notation in the prototype is described in the next section.
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The last abstraction layer are activities. For each tracked object, there is at, any time,
exactly one activity assigned. Activities are similar to a current state of the observed
behavior. Hence, UML state charts suggest themselves in order to describe activities.
Events may act as transitions between two states. Since the event initiating the transition
between two states is considered to be part of the following activity, its start time is
used as the start time of the new activity. Figure 5.3 shows an example for a simplified
description of activities. Obviously, many activities and transitions are missing. The
example nonetheless shows that state charts seem like a convenient notation to describe
activities.

Figure 5.3: Simplified UML State Chart to Describe Activities

State charts still have to be extended by some sort of notation to include uncertainty
about the current activity. For example, if a bat decides to sleep, it may not be
distinguishable from a short pause at the beginning. The same problem arises at telling
apart transit and hunting flights, if the speed is appropriate for both and there was not
yet an attempt to catch an insect.

Breaking the rule of only one activity for each time instant could solve this problem.
If nondeterminism is included similar to a nondeterministic finite automaton, then all
activities that may be correct are assigned. If no clear decision can be derived, then
alternatives have to be emitted.

A second approach is offering revision transitions. If an event invalidates a previous
classification of the current activity, then this activity can be changed to the afterwards
hopefully correct one. Revision transitions are only applied to the current state, older
history cannot be changed by this notation. Since the decision which notation to choose
highly depends on the user, domain experts were asked and opted for revision transitions.
In section 5.5 this notation is explained in detail.
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5.3 Low- and High Level Events

Since some events to be modeled are more easily defined in a data stream processing
approach while others benefit from patterns, both approaches are applied. Hence, this
section integrates complex event processing and data stream processing. There are huge
similarities to MavEStream (section 3.2.1). Low level events in MavEStream are called
computed events. Computed events are forwarded to a regular complex event processing
engine. This section defines low and high level events and introduces their notation.

5.3.1 Low Level Event

Low level events are regular continuous streams interpreted as events. In order to avoid
uncertainties, the streams need to conform to some rules: An event happens at some
specific point in time or timespan. If it is just one time instant, then the stream should
contain either a time attribute or two attributes start and end with an equal value. If
the event definition requires a timespan, then definitely both attributes start and end
are compulsory. Each event has a name and may contain several other annotations, e.g.
to include an object ID or spatial information.

If a stream is defined to only generate one event type, there is no need to explicitly
add the name to every tuple. Listing 5.3 shows the scheme of a single event definition.
Stream is either the name of a predefined stream or a select statement. If it is easier
to define multiple events in one stream, then this stream has to contain the name of
each event in the attribute type. The schema depicted in listing 5.4 obviously does not
contain an explicit name.

1 create Event name as
2 Stream ;

Listing 5.3: Definition of One Low Level Event

1 create Events
2 Stream ;

Listing 5.4: Definition of Multiple Low Level Events

Both definitions can be interchanged. A named single stream definition can be
transformed to one without an explicit name similar to listing 5.5. If all possible
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event names for a stream are known à priori, then obviously there is also a converse
transformation to several create event statements.

1 create Events
2 select *, "name" as type
3 from Stream ;

Listing 5.5: Transformation of Create Event Statements

5.3.2 High Level Event

High level events are patterns over low level events or other high level events. In order
to answer biologists questions, several temporal relations between events have to be
expressible [All83]. The relations sequence, or and parallel are described in table 5.2.
The constant tmin in the formal description of the sequence is the smallest time instant
possible and is added to the end and chosen timespan in order to guarantee that B

happens after A. The expressiveness of the proposed notation is evaluated in section 9.4.1.

Relation Notation Informal Formal
sequence A ->(timespan) B B starts at the maximum

of timespan after A
A.end + ttimespan + tmin ≥ B.start

A -> B A ->(0s) B or A ▷ B
or A + B A or B happens
parallel A || B A and B overlap A.start ≤ B.start ≤ A.end

∨B.start ≤ A.start ≤ B.end

Table 5.2: Event Relations in High Level Events

A notation borrowed from [Espb] is every. The pattern every (A ->(t) B) matches for
every event A followed by a B. After a match was detected, the pattern matcher restarts.
Without every, the whole pattern matches once. The pattern every A ->(t) every B

matches every A which is followed by a B. It may generate more output than
every (A ->(t) B) if several A events occur prior to a B. For A ->(t) every B the
first A is matched to all following events B.

The relations in table 5.2 can be compared to those in [AFR+10]. A sequence
every A ->(∞) every B corresponds to A SEQ B and every A ->(0s) every B is
A MEETS B. [AFR+10] does not allow other restrictions of timespans between se-
quences. However, they can be imitated by “window processes” and other relations. An
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every A + every B is the same as A OR B. Moreover, every A || every B is equal to
A PAR B.

The consumption of events is also possible in order to allow several associated patterns
to only fire until one pattern consumed a requested event, for example for flew in
listing 5.12. If an event is consumed in the pattern, it is prefixed with a star, e.g. *A ->(t) B

consumes an A event.
The schema of a high level event is nearly complete. Conditions should be added in

order to allow an easy correlation to tracked objects. Since events in a pattern may need
to be referenced, they can be assigned to a variable. Conditions for an event are put in
parentheses. The notation is also borrowed from [Espb]: a = A ->(t) B(a.batID = batID)
correlates to events A and B only if their attributes batID are equal. The syntax for
finally creating an event is depicted in listing 5.6. Attributes also reference events in a
pattern by its variable name.

1 create Event
2 name(attribute1 , attribute2 , ...) ::= pattern ;

Listing 5.6: Definition of a High Level Event

Since Esper provided a huge amount of the presented notation, it might as well replace
the pattern matcher in the prototype. However, output has to be rerouted back into the
detection of activities after a replacement.

5.4 Terrain Features

The analysis of position data streams obviously has to take the environment into account.
A special area might be a pond or a river as well as an area in which a certain type of
tree grows. A region is a user-defined area of interest. Rectangles, circles and polygons
can be used for the specification. Moreover, a region can consist of two regions R1 and
R2 combined to R1 ∪ R2, R1 ∩ R2 or R1 \ R2. Domain experts have to decide, which
regions need to be defined and what their semantics are. Matching positions to regions
allows to incorporate contextual information into events, for example a pattern of a
drinking bat may use the entering and leaving of a pond region.

Technically, it is not necessary to add any notation or operator. Regular stream defini-
tions already allow selection predicates that resemble region tests. However, manually
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writing a region test for a polygon is nontrivial and just invites errors. Hence, extending
the notation with regions clarifies queries and increases usability.

Figure 5.4 sketches what a naive approach should return. This can be implemented
by creating a stream resembling a region test. A window of two time units compares
the results of the region tests and changes yield enter and leave. This implementation
assumes that there are neither holes1 nor semantic gaps2 in the position data stream. If a
mobile node initially is inside a region, no enter is emitted. From now on, this approach
is called hard discretization.

If there really are no holes and position data is assumed to be exact, this approach
is not far from perfect. In reality, there are measuring inaccuracies and a mobile node
moving at or near the border of a region yields many arrival and departure events.

Soft discretization adds a tube around the border in which it is unclear whether
a point is inside a region. Within the tube, the previous state remains unchanged.
Crossing the inner border of the tube means that a point really is within the region
until the outer border of the tube was crossed. Figure 5.5 shows the resulting messages
of the previous example with soft discretization. Moving at the border now results in
fewer messages and measuring inaccuracies are less hurtful. The approach resembles
Enter (DS0 � {DSB|DSN} � DSI) and Leave from [BBBB10].

Listing 5.7 shows the notation of activating enter and leave low level events in the
prototype. The function takes a whole position stream as input and creates a stream
adhering the definition of low level events. The input stream is required to provide the
attributes x and y. The following functions are defined:

• ENTERLEAV E(Stream): Both enter and leave events

• ENTER(Stream): Only enter

• LEAV E(Stream): Only leave

Of course it is possible to add other types of spatio-temporal predicates similar to
[BBBB10] in the future.

1 create Events
2 ENTERLEAVE ( Positions );

Listing 5.7: Activating Detection of enter and leave

1 Missing data in a movement track due to hardware or software malfunction (section 3.4, page 21)
2 An interval in which data is missing on purpose (section 3.4, page 21)
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Figure 5.4: Entering and Leaving Regions (Hard Discretization)

Hard discretization is also available in order to just test whether a position is in a
region. The following functions are available:

• getRegions(x, y): float × float 7→ {String}
Returns all matching regions.

• inRegion(x, y, ”R”): float × float × String 7→ bool

Simple region test depending only on the passed position. The function can be
implemented using getRegions: inRegion(x, y, ”R”) = ”R” ∈ getRegions(x, y)
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enter

leave

leave

enter

Figure 5.5: Entering and Leaving Regions (Soft Discretization)

5.5 Aggregating Activities

For BATS and related scenarios, there should be certain restrictions on activities. Each
tracked animal is assigned one activity at any time. If the current activity is unknown,
for example because of a lost connection, a backup activity for ’Unknown’ should be
assigned. Hence there is at least one activity. For this scenario, more than one activity
at the same time does not make sense and instead of adding value it would only increase
complexity. All modeled bat activities are mutually exclusive, e.g. drinking and sleeping
at the same time is not possible. Forbidding parallel activities simplifies predictions and
enables modeling similar to state charts.

Furthermore, activities have to be assigned to a tracked object. Events do not
necessarily need that, e.g. visibility of the moon does not require to track a dummy
’Gaia’ object. Also, a change of an activity means actually changing the activity, e.g.
’foraging’ after ’foraging’ should be replaced by a longer foraging session.

An essential advantage of modeling activities and transitions between them as UML
state diagrams is that it enables to include high level events as simple triggers for
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transitions. It abstracts away complex patterns for high level events depending on the
previous state and unmaintainable criterions for exclusion for each activity event.

For better applicability, those state diagrams need to be extended. At runtime,
activities may need to be revised if they were not properly detected. For example, in the
first 30 minutes of resting there is no difference between making a break and sleeping.
Just flying around in the woods and foraging also is actually the same until a bat tries
to catch an insect or displays known flight patterns of hunting or transit.

Of course, this problem could be hidden away by waiting for the next activity change
and applying a filter to results. Unfortunately, this approach would prevent live reports
of current activities of observed animals. In section 5.2, a nondeterministic approach as
well as UML state diagrams extended with revision transitions have been sketched. Since
the decision which notation to choose highly depends on the user, both approaches were
presented to domain experts. They opted for revision transitions. Revision transitions
replace the last chosen activity with a revised one. The start time of the revised activity
is the start time of the replaced activity.

Hence, introducing revision transitions also enables the use of dummy states to simplify
otherwise complex conditions or patterns of activities. Those dummy states do not
need regular transitions, hence they never show up in final activity overviews. The final
extension to the state diagrams are aliases which simplify the usage of dummy states.
A state can be declared an alias of another state in order to just have the same name
and the guarantee of true activity changes, e.g. a dummy state for pause does not follow
another pause, they are combined. Since at each time instant only one activity is valid,
a state can only be an alias for at most one other state. One state may have as many
aliases as necessary. Aliases both allow sane overviews of current activities and models
similar to hidden Markov models, whereas aliases are observable evidences and dummy
states the hidden actual states.

Figure 5.6 shows all elements of the UML state diagram extended with revision
transitions and aliases.
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Figure 5.6: Elements of the Extended UML State Diagram for Activities

5.6 Examples

In order to show that the proposed notation really allows to define necessary events and
activities, some examples are modeled in this section.

P ausedtimespan and F lewtimespan

A simple approach to test whether an animal is currently pausing or in transit is to
compare subsequent positions. Considering imprecision of position data, small errors
should not result in a wrong interpretation. Furthermore, if a bat makes a pause hanging
on a tree, the tree itself might be swinging depending on weather conditions. Hence,
small movement should still count as a pause. The following requirements have been
elaborated for pausetimespan:

1. The whole movement track over the period of timespan should not exceed a fixed
length of dtimespan

max .

2. A fixed amount of subsequent positions should not exceed a (smaller) fixed length
of dshort

max . This allows small errors up to a defined limit and rules out short flights
in the observed timespan.

The requirements for flewtimespan are similar:

1. The whole movement track over the period of timespan has to exceed a fixed
length of dtimespan

min .
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2. A fixed amount of subsequent positions has to exceed a fixed length of dshort
min . This

rules out a short pause.

It is not required that each time instant contains one of both events, which is the case
if there is no signal or if the selected parameters differ. Figure 5.7 sketches the behavior
of both events. The classification of the depicted trajectory depends on the chosen limits.
Only queries required for pausetimespan are outlined since both events are rather similar.

1 create stream SubsequentDistances as
2 select p2.time , p2.ID ,
3 sqrt(pow(p2.x - p1.x, 2) + pow(p2.y - p1.y, 2)) as dist
4 from Positions p1 [ range 2s],
5 Positions p2 [ range 1s]
6 where p1.time < p2.time
7 and p1.ID = p2.ID;

Listing 5.8: Pausedtimespan: Subsequent Distances

Listing 5.8 shows how to retrieve subsequent distances. All examples assume a frequency
of 1Hz of incoming data per bat. In listing 5.9 the total length of the trajectory within
timespan = 60s is aggregated. A short period of 5s was chosen for the second requirement.
The stream TotalDistance5s is not explicitly stated, but similar to listing 5.9.

The second requirement has to be true for each 5s-period within the timespan. List-
ing 5.10 allows to check this for the whole timespan.

Finally, listing 5.11 combines these streams to a low level event for pausedtimespan.

Figure 5.7: Sketch for pausedtimespan and flewtimespan
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1 create stream TotalDistance60s as
2 select MAX(time) as time , ID , SUM(dist) as dist
3 from SubsequentDistances [range 60s]
4 partition by ID;

Listing 5.9: Pausedtimespan: Total Distance Over 60s

1 create stream Max5sDistance60s as
2 select MAX(time) as time , ID , MAX(dist) as dist
3 from TotalDistance5s [ range 56s]
4 partition by ID;

Listing 5.10: Pausedtimespan: Maximum 5s-Distance Within 60s

1 create event paused60s as
2 select t.time , m.ID
3 from Max5sDistance60s m [range 1s],
4 TotalDistance60s t [range 1s]
5 where m.ID = t.ID
6 and m.dist < $MAXSHORT
7 and t.dist < $MAXLONG ;

Listing 5.11: Definition of Pausedtimespan

F lew

It is now assumed that flew60s has already been defined and its definition includes an
annotation dist for the total distance of the trajectory. Similar to pausedtimespan it has
only one time instant. A simple approach to flew is depicted in listing 5.12. The first
definition of flew has to explicitly state the start of the event. The attributes time and
end are implicitly assigned.

1 create event
2 flew(b.ID , (a.dist + b.dist) as dist) ::=
3 every a=flew ->(75s) *b= flew60s (a.ID = ID and (time - 59s) > a.end);
4

5 create event
6 flew(a.ID , (a.time - 59s) as start , dist) ::=
7 every *a= flew60s ;

Listing 5.12: Definition of Flew

The timespan between two subsequent flights to be interpreted as one flew event
is not allowed to exceed 15s in this example. In order to reduce parallel flew events,
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flew60s are consumed: If the pattern matcher has not seen a current flew event when
flew60s arrives, a new flew is created. Otherwise, the event is consumed and the
pattern matcher does not arrive at the second pattern.

EnteredRegion(R) and LeftRegion(R)

Listing 5.7 in section 5.4 already defined enter and leave for regions with soft discretiza-
tion.

F lewInSpeedCorridorrange(L)

FlewInSpeedCorridorrange(L) is similar to Flew. In order to enforce the speed corridor,
the event flew15s is filtered for speed. Listing 5.13 depicts this filtering. A smaller
timespan was chosen to allow more precise speed measurements.

1 create event
2 flew15sCorridor15_25 (a.ID , (a.time - 14s) as start) ::=
3 every a= flew15s (dist > $MIN and dist < $MAX);

Listing 5.13: FlewInSpeedCorridor15−25km/h(L): Observed Timespan of 15s

Unlike flew the distance is not important in this example. Listing 5.14 finally outlines
the definition of flewInSpeedCorridor15−25km/h(L).

1 create event
2 flewInSpeedCorridor15_25 (b.ID) ::=
3 every a= flewInSpeedCorridor15_25 ->(15s)
4 *b= flew15sCorridor15_25 (a.ID = ID);
5

6 create event
7 flewInSpeedCorridor15_25 (a.ID) ::= every *a= flew15sCorridor15_25 ;

Listing 5.14: Definition of FlewInSpeedCorridor15−25km/h(L)

AteInsect

The definition of ateInsect depends on the availability of the z-axis and actual bat
behavior. Figure 5.8 sketches a successful hunt for an insect after catching it. The whole
pattern includes landing on the ground after hearing a suspicious noise. On the ground,
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the bat grubs for the suspected beetle. After successfully catching the insect, the bat
flies straight up and circles in the air while consuming its prey. Section 5.2 sketched the
pattern ateInsect ::= wentDown ▷ risenUp ▷ flewInCircles.

Figure 5.8: Sketch of Successful Hunting Behavior

If no z-axis is available, then the definition obviously cannot use wentDown and
risenUp. However, a short pause interrupting a flight followed by flewInCircles can
be detected. The final definition of ateInsect should certainly be elaborated after actual
sensor data has been retrieved. The following paragraphs assume that the z-axis is
available.

A simple solution to wentDown is looking at a small window of for example 10 seconds
and comparing the heights of the start and end to predefined limits. The height of the
start should be clearly above the ground, whereas the height of the end is not far from
zero. The actual limits need to account for the precision of measuring the z-axis in the
field as well as possible springy bat behavior. In order to further reduce the influence
of errors in measurement, more than one height at the start and end may be averaged.
In listing 5.15 three values were averaged and the height at both ends of the interval is
compared to predefined limits $MIN (start) and $MAX (end). The sliding windows possibly
produce several wentDown events. Unlike enter and leave, this does not matter for
wentDown, since all produced events represent the same information.

The inverse event risenUp can be defined in the same way with other height limits and
is now assumed to be already implemented. The basic approach to define flewInCircles

is less straightforward. At each time unit, one position is measured. The radius of the
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1 create stream AveragedHeight as
2 select ID , AVG(z) as height
3 from Positions [ range 3s]
4 partition by ID;
5

6 create event wentDown as
7 select (a2.time - 9s) as start , a2.time as end , a2.ID
8 from AveragedHeight a1 [range 8s],
9 AveragedHeight a2 [range 1s]

10 where a1.ID = a2.ID
11 and a1.time + 7 = a2.time
12 and a1. height > $MIN
13 and a2. height < $MAX;

Listing 5.15: Definition of WentDown

circle is not very big, in this example it is assumed to be 15m. Plotted measured points
of actual trajectories in the field may yield a cloud of positions similar to figure 5.9 due
to measurement precision and “long” timespans between two measurements.

Whether a plotted trajectory of a circular flight really resembles a circle can seriously
be doubted. Hence, another approach is proposed: Drawing a circle around a cloud
of points and checking whether a certain minimum, e.g. 90%, are within the circle.
Summarizing the subsequent distances and comparing them to a minimum trajectory
length for a flight also allows to distinguish it from a pause.

The whole procedure can be summarized by the following steps:

1. Finding the center of the circle:
A query to average values for x and y over a certain window, for example 60s.

2. Retrieving the total number of considered positions: The query in step 1 can be
extended with COUNT().

3. Counting all measured positions within the window which are within the radius
around the center.

4. Summarizing the total distance of subsequent points within the window.
This has already been implemented in listing 5.9.

5. Joining the previous streams at each time unit and checking limits for the total
distance and the counted points around the center.

Since all single steps are trivial, they are now assumed to be implemented. All necessary
events to describe ateInsect are available. The timespan between wentDown and risenUp
are now assumed to be a maximum of 45s to grub for a beetle. Even though flying in
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r

Figure 5.9: Sketch of Expected Measured Data and Detection

circles should start immediately, a safety margin of 10s is applied. Listing 5.16 contains
all depicted timespans and the elaborated events.

1 create event
2 ateInsect (down.ID) ::=
3 every down= wentDown ->(45s)
4 risenUp (down.ID = ID) ->(10s)
5 flewInCircles (down.ID = ID);

Listing 5.16: Definition of AteInsect

Activities

The following examples introduce the usage of revision transitions and aliases. Figure 5.10
distinguishes sleeping and a pause. After 30 minutes of no movement, the previous
detection of a pause is replaced with the activity ’sleeping’.

The next example in figure 5.11 is still only a simplified model of bat behavior. However,
it includes a dummy state. Table 5.3 shows how this model behaves for different events.
The subscript after events states the time instant, at which the event occured. The
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Figure 5.10: Simplified Model Distinguishing Sleeping and a Pause

subscript after resulting activities marks the start time of the activity. The revision allows
short breaks while foraging. As long as the dummy state foragingbreak is not replaced,
the visible state to the user is pause. Emitted activities contain a preliminary-flag in
order to specify whether the activity can be revised. Input 2 in table 5.3 is caused by
two subsequent foraging activities merged to one.

Figure 5.12 shows the whole model of bat behavior. It uses a dummy state for transit,
drinking and hunting which also is used as the initial state. Short breaks during hunting
sessions are emitted as a pause. Restarting to fly directly changes the activity back to
the hunting session.

Figure 5.11: Simplified Model Allowing Short Breaks While Foraging
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Figure 5.12: Possible Model to Describe Bat Behavior
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Input Events Resulting Activities
1 - sleeping0
2 ateInsect1 sleeping0, foraging1
3 ateInsect1, paused10min650 sleeping0, foraging1, pause650
4 ateInsect1, paused10min650, drank900 sleeping0, foraging1, pause650, drinking900
5 ateInsect1, paused10min650,

ateInsect800, drank900

sleeping0, foraging1, drinking900

6 ateInsect1, paused10min650,
paused30min1850

sleeping0, foraging1, sleeping650

Table 5.3: Examples of Detected Activities in Figure 5.10

5.7 Summary

This chapter introduces the terms event and activity. Their detection allows biologists
to test hypotheses on animal behavior and to draw new conclusions.

Motivating behavior to be modeled and detected in BATS is introduced. Requirements
for a possible notation considering different abstraction levels of behavior is elaborated.
The definition of events is separated into low level events and high level events. Low
level events are regular continuous streams interpreted as events. High level events are
patterns over low level events or other high level events. Since both event types represent
two different processing models, they entail the integration of data stream processing
and complex event processing in the prototype.

In order to model activities, UML state diagrams are extended with revision transitions
and aliases. The transitions between activities correspond to low level and high level
events. Some characteristic motivational events and activities are modeled in the proposed
notations.

The definition of activities enforcing exactly one activity for each time instant and
transitions between activities allows to introduce state-of-the-art techniques for activity
predictions.
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The last chapter introduced activities. Every tracked individual only performs one
activity at a time. A sequence of activities represents the behavior during the observed
interval. The behavior may depend on observable influences, for example time, brightness
and previous activity.

This chapter introduces predictions. Predictions allow to directly exploit an enhanced
understanding of the behavior of bats. The presented techniques may be used to answer
stated and future questions of biologists as well as supporting experiments. The chosen
approach is outlined and available observable influences to be measured are depicted.
Moreover, different types of predictions are presented, i.e. not only abstract activities,
but also their characteristics.

6.1 Motivation

Being able to predict the behavior of an individual allows to support further observations.
A notification in the form of “Bat X most likely is foraging in area Y in 10 minutes”
enables biologists to move to area Y themselves or to automatically start already prepared
recording equipment which is ready as soon as the bat arrives. It may also trigger not
only observing, but also interacting experiments, e.g. emitting certain noises to verify
hypotheses on reactions. If an experiment has no access to the public grid, this approach
helps to increase the battery life. Even if saving energy is of no concern, it reduces
observations and thereby measured data to time intervals of interest.

The techniques of predicting activities can also be used to directly answer several
questions of biologists. For example, the hypothesis of whether bats show signs of
lunaphobia can be tested by comparing behavior depending on the measured brightness.
If behavior is quantifiable and comparable, then a more abstract question on whether
bats have a personality can be answered.

Taking spatial characteristics of activities into account, e.g. foraging regions or drinking
ponds, allows to check whether individuals frequent previous points of interest and return
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to them. Correlations of observable influences to spatial characteristics of activities can
also be unraveled.

Finally, the accuracy of predictions is also an indicator of how good the model is. This
of course assumes, that changing activities does not happen randomly or only up to a
certain degree.

6.2 Dynamic Bayesian Networks

Bayesian networks describe conditional interdependencies between random variables.
Dynamic Bayesian Networks (DBN) extend Bayesian networks with time and allow more
compact representations of hidden Markov models. In order to create a DBN, three
types of probability distribution have to be provided: [RN04]

1. Unconditional (initial) probability distribution of state variables X: P (X0)

2. Conditional probability distribution for transitions between states: P (Xt+1|Xt)

3. Sensor Model for Emissions E: P (Et|Xt)

Activity recognition in the last chapter can be summarized by figure 6.1 from the
view of a prediction engine. There is a hidden state of the observed objects as well as
the environment. The emissions the prediction engine can see are the output of the
techniques presented in chapter 5. Some other emissions for environmental conditions or
assumed information on the state of the animals, e.g. whether they had enough to eat,
may be revealed in an additional random variable or as payload of the activity random
variable. If the state variable is split into more than one random variable, figure 6.1
depicts no longer a hidden Markov model.

The goal of this chapter is to introduce predictions in the form of figure 6.2. The
state is splitted into environment information as well as data on the observed animal.
The environment as well as an animal has its own state. The environment obviously
influences the behavior and thereby the state of a bat. The influence of a single animal

State0

Activity0

S1 S2

A1

S3

A2 A3

...

Figure 6.1: Simplified Description of Section 5.5
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on the environment may be negligible, but since there is influence, a connection is at least
drawn with a dashed line. Activities are emitted based on measured environmental and
animal state. Depending on the model, the estimated activity of the last time instant has
influence on the next one. Hence, a third sequence chain or rather process was added.

Predictions are based on all available information of environmental and animal state as
well as the current activity. Strictly speaking, emission random variables for environmental
and animal state are missing. Available emissions will be introduced in the following
section and are for now combined with the state variables.

The sketch of the goal of this chapter with Dynamic Bayesian networks already qualifies
it to use in predictions. The only missing step are conditional probability distributions
between the depicted random variables. After adding them, figure 6.2 is the proposed
solution.

In order to simplify the notation of dependencies, regular Bayesian networks are now
used. Figure 6.3 sketches the approach: The conditional probability tables (CPT) of past
observations of activity transitions are used to predict the next activity. It is assumed,
that P (Xt+1|Xt) ≈ P (Xt|Xt−1), which is usual for DBN.

The networks are modeled by domain experts. If no sensor provides emissions for a
random variable, it is either not usable or a static CPT for the variable itself and other
directly dependant variables has to be provided. If each and every used variable in a
CPT is available as an emission, it can be updated automatically to gain precision over
time. These automated updates are intended as the default use case.

Bat State0

Activity0

Prediction0

S1

E1

A1

Environment0

S2

E2

P1

S3

A2

E3

P2

A3

P3

...

...

...

Figure 6.2: Dynamic Bayesian Network Sketching Prediction in BATS
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Environment
Emissionst

Activityt

Bat State
Emissionst

Activityt - 1

(a) Step 1: Approximate CPT of Activityt

Environment
Emissionst

Predicted
Activityt+1

Bat State
Emissionst

Activityt

(b) Step 2: Use CPT of Activityt for Predictions

Figure 6.3: Approximated CPT of Activityt in Figure 6.3(a) Used as the CPT of
Predicted Activityt+1 in Figure 6.3(b)

6.3 Suitable Random Variables

The behavior of an animal most likely not only depends on its last activity, but on a wide
range of environmental conditions and short-term history as well as probably long-term
memory. Possible random variables in Bayes networks can be divided into object state
and environmental state. The random variables explained in this section of course can
only be a selection of presumably important influences.

6.3.1 Object State

The current activity obviously has influence on the next one. Resting may depend on
how exhausting a previous hunting session has been and some activity transitions are
excluded by definition, e.g. making a break before or after sleeping or equal subsequent
activities. The previous, penultimate, antepenultimate or an even older activity probably
also still has influence on current behavior. If a longer history is necessary, then the
composite Dynamic Bayesian network no longer resembles a first-order Markov model
similar to figure 6.2. This may have impact on future optimizations.

The short-term properties saturation and thirst may also influence the behavior.
Saturation may be approximated by counting patterns of successful hunts or summing
the lengths of hunting sessions up. Thirst is similar, counting previous drinking events
should suffice. Aggregating the counted or measured values to several distinct groups
allows to provide small CPTs.

Furthermore, the current location can be an indicator of future behavior. Reusing region
tests suggests itself since domain experts define regions according to their experience or
assumptions. Since regions may overlap, either the whole power set of regions or the
power set without impossible combinations represents the random variable.
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6.3.2 Environmental Data

An important influence is time. For BATS, biologists would partition time according to
figure 6.4 in order to produce smaller but meaningful CPTs. A night can be partitioned in
several intervals. Too many partitions produce huge CPTs without significant differences
for nearby cells in a line whereas too few ones do not add much value. The perfect
number of partitions should be determined on real measured data in the field.

Other possible random variables are weather, e.g. whether it is raining or exceptionally
windy. Temperature and humidity also deserve their own random variable. In order to
test hypotheses on lunaphobia, sensors should be attached to ground nodes in order to
measure brightness.

6.4 Examples

Figure 6.5(a) shows almost the simplest of all possible Bayesian networks to predict the
next activity, it only considers the current activity. Table 6.5(d) is a sample CPT which
resembles figure 6.5(a). In order to restrict the size of the sample CPT, it assumes there
are only four activities (hunting, drinking, pausing, sleeping), even though six have been
presented in the last chapter. Since the values of all used variables are available, domain
experts do not need to provide a CPT. It is built by the system and should converge to
the true probability distribution over time. The only smaller network is a single node for
the predicted activityt+1 without any conditions.

Figure 6.5(b) uses several random variables. Still, one CPT suffices, since all depen-
dencies are modeled between each present random variable and the prediction variable.
It uses environmental data (time) as well as object state (current activity, saturation
and thirst).

Figure 6.5(c) is a more realistic version of figure 6.5(b). Thirstiness and saturation of a
bat changes during hunting sessions and flights to watering places. Time is a restriction
on the previous length of hunting and watering flights. Throughout the night, more and
more needs are fulfilled and therefore, saturation and thirstiness depends on time.

Day Night1 Night2 Night3 Day
sunset +1h sunrise −1h

Figure 6.4: Sample Partitioning of Time
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Activityt
Predicted
Activityt+1

(a) Simple Bayesian Network

Saturation t

Predicted
Activityt+1

Timet Thirstt

Activityt

(b) Several Dependencies

Saturation t

Predicted
Activityt+1

Timet

Thirstt

Activityt

(c) Realistic Dependencies Between Random Variables

Predicted Activityt+1
Activityt Hunting Drinking Pausing Sleeping
Hunting 0.0 0.3 0.5 0.2
Drinking 0.6 0.0 0.2 0.2
Pausing 0.7 0.3 0.0 0.0
Sleeping 0.9 0.1 0.0 0.0

(d) Possible CPT of Figure 6.5(a)

Figure 6.5: Examples of Bayesian Networks Predicting the Next Activity

However, the predictions of figure 6.5(b) and figure 6.5(c) are the same. All values of
random variables can be approximated. Without missing information, one CPT suffices
to predict the next activity and both examples share the same table. Nonetheless,
figure 6.5(c) is a better model, since the CPTs of Saturation and Thirst are also built
and updated by the system. The tables are available for further analyses, for example
testing how saturation changes throughout the night.

6.5 Other Types of Predictions

The presented approach to predict activities can also be applied to their characteristics.
Two main attributes of interest are the temporal length of activities as well as their
location. Dependencies between random variables are stated as before. Hence, the
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structure of the Bayesian network remains the same. The random variable of the
attribute to be predicted may be slightly different: If a CPT is not suitable, then a
very similar conditional table is used. This chapter states characteristics and employed
conditional tables for the attributes length as well as region of activities. Other attributes
can be treated similarly.

6.5.1 Length of Activities

There are several approaches to describe a typical length of an activity. The most
straightforward way is to use the average. Histograms as well as the median may be
helpful in order to identify missing conditions.

Average

Table 6.1 sketches a conditional average table. Instead of a probability its values are the
current average. Continuously updating an average is trivial, since the whole history of
previous values can be condensed into two intermediate results: the number of values
and their sum. The conditional averages can directly be emitted as possible lengths.

Length of Activityt

Time Saturation Hunting Drinking Pausing Sleeping
Night1 Famished 90min 10min 15min -
Night1 Peckish 45min 11min 10min -
Night1 Full 15min 12min 15min -
Night2 Famished 1h 10min 13min 12h

. . . . . .

Table 6.1: Conditional Average Table

Histograms

Creating a conditional histogram table is also possible. If only one value as a future
length should be emitted, then these tables are only useful if a better function than an
average to combine the bars of the histogram is stated, since the proposed conditional
average table is more precise. Table 6.2 is an example of a conditional histogram table.

However, a histogram allows to better display the distribution and is therefore intended
for results visible to domain experts. Certain spikes in different locations may indicate
that not all important conditions have been modeled.
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Length of Activityt

Time Saturation Hunting Drinking Pausing Sleeping

Night1 Full

. . . . . .

Table 6.2: Conditional Histogram Table

Median

The median requires a full history of previous values. It can be approximated by reusing
the histogram tables. A conditional median table is also only intended for results visible
to domain experts.

6.5.2 Regions

The probability of an event happening in a certain region can be represented by conditional
probability tables, since the regions defined in chapter 5 allow discrete random variables.
There are several peculiarities to consider:

1. If the activities to be examined contain all regions that were visited during the
activity, then the random variable should contain the power set of regions.

2. If regions overlap, then the power set of regions in the random variable is necessary.
Impossible combinations (no overlap) can be omitted.

3. If regions overlap and all regions visited during the activity are considered, then of
course the power set of regions is necessary as well.

Table 6.3 shows a CPT representing region probabilities. It uses the power set of the
regions R1 and R2, since those two sample events overlap.

(Overlapping) Regions of Activityt

Time Activityt {} {R1} {R2} {R1, R2}
Night1 Hunting 0.2 0.5 0.2 0.1

. . . . . .

Table 6.3: Conditional Probability Table for Overlapping Regions
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6.6 Adaptive Prediction

The current approach of predicting activities has several disadvantages. Initially, the
CPTs and other conditional tables have many empty and unreliable rows. Hence,
thorough models initially are rather useless even though there might already be enough
information for less precise predictions. Rare cases also do not benefit from well thought-
out models due to sparsely filled tables. What happens, if there simply was no past
occurence similar to the current situation? Moreover, it was not yet specified whether a
conditional table aggregates the behavior of one, all or a selection of observed animals.
Until now, a domain expert makes one educated guess on the dependencies of random
variables. He may have several hypotheses.

Adaptive predictions are proposed in order to eliminate or at least reduce these
problems. Domain experts are free to define as many Bayesian networks for activities
and attributes as they want.

Even small and imprecise networks not covering all influences are welcome backup
plans to use in cases, where precise information is still missing or not reliable enough.
Conditional tables can be assigned to the behavior of one animal as well as to a group
or all animals. The same Bayesian network can be used several times with different
assignments of conditional tables.

The approach can be summarized as follows:

1. All Bayesian networks are updated continuously.

2. All Bayesian networks predict continuously, success is measured.

3. All Bayesian networks are continuously ordered by their success.

4. Emitted predictions:
Until one network is reliable enough for the current situation, they are checked
ordered by their success. If more occurences than a defined limit in the appropriate
row of a conditional table are present, then it is assumed to be reliable and the
prediction of this network is emitted. Otherwise, the next less successful network
is checked.

For discrete random variables, the success measure is the frequency of correct predic-
tions. A success measure for average and median lengths can be an average of eucledian
distances between correct and predicted lengths. Measuring success of histograms is
possible by comparing its average to the predicted length, by using the probability of
the bucket of the actual length or with a user-defined success measure.
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In order to measure the reliability of a row, occurences of the row have to be counted.
The domain expert decides at which minimum of occurences a row in a conditional table
is assumed to be reliable.

Over time, the CPTs gain precision and therefore more thorough models become more
successful. Initially, less precise models quickly allow to predict more and more reliably.
If different animals display different behavior, then their individual conditional tables also
gain precision over time and will be more successful than their aggregated counterpart.
Even though initially they may be useless, over time individual conditional tables can
therefore even further improve the precision of predictions.

6.7 Summary

This chapter introduced predictions of activities and their attributes. Dynamic Bayesian
networks are used in order to consider dependencies between random variables. For the
purpose of making the notation of predictions more comfortable, domain experts state
Bayesian networks that consist of environmental emissions without any state transition
and the transition of animal state. The transition of animal state is represented by
random variables for the previous and current activity or respectively the current and
predicted activity.

Suitable random variables to be used in Bayesian networks are presented afterwards.
Continuous values, e.g. time and temperature, are partitioned for the sake of simplicity.
The approach to predict activities can also be applied to their attributes. Hence,
peculiarities for two important attributes, the length of an activity as well as its region(s),
are presented. Conditional tables for averaged values as well as histograms are suggested.

Finally, adaptive prediction is proposed in order to improve the precision of predictions.
Domain experts can now state several hypotheses on the dependency structure of random
variables and all corresponding conditional tables in Bayesian networks are updated
continuously. The success of predictions is measured and the currently most successful
network offering sufficient reliability emits predictions to the user.

The conditional tables in stated Bayesian networks and success measures of adaptive
prediction can be used to further analyze behavior. The next chapter presents further
analyses leveraging data which was collected to support predictions.
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Providing predictions requires to collect data for several conditional tables in Bayesian
networks. These conditional tables can be further analyzed. They allow to make
inferences and answer questions on expected activities as well as on whether bats have a
personality.

In order to support biologists to interpret findings, visualizations have to be provided.
Heatmaps, local convex hulls and activity sequence diagrams are presented in the following
sections.

7.1 Heatmaps

There are several types of heatmaps, e.g. regular heat matrices and choropleth maps.
Heatmaps allow to relate a multitude of interesting attributes to their position. Of course,
the density of positions within a grid cell or region is a useful and common visualization.
A visualization of signal strength, velocity and several measured sensor data can be
beneficial as well.

Figure 7.1 shows a regular heatmap or rather heat matrix of the velocity of bats. The
prototype can also produce thematic choropleth maps depending on region definitions
from domain experts.

In order to incorporate changes over time into examinations, heatmaps of both types
can be combined into an animation. Moreover, to further support domain experts in
relating values to terrain features, the prototype optionally overlays satellite images.
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Figure 7.1: Regular Heatmap of Velocity

7.2 LoCoH

Local Convex Hulls (LoCoH) are used to estimate home ranges and utilization distribu-
tions. They are able to identify hard boundaries, e.g. rivers or cliffs, and converge to the
true distribution as the sample size increases [GFRC+07].

An R script for all three Local Convex Hull (LoCoH) methods introduced in [GFRC+07]
is available at [GFR13]. Figure 7.2 is a sample output of the prototype. It depicts a
fixed k-LoCoH (k = 10) generated from simulated trajectories.

An R script for the newer version T-LoCoH incorporating time is available at [Lyo14].
The prototype provides operators to output fixed k-LoCoH, fixed r-LoCoH, adaptive
a-LoCoH as well as the newer T-LoCoH. The parameters k, r and a can easily be adapted
in the API. Generating output in several formats, e.g. PDF or SVG, is already prepared
and only has to be turned on.
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7.3 Inference in Bayesian Networks
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Figure 7.2: Fixed k-LoCoH (k = 10) of Simulated Trajectories

7.3 Inference in Bayesian Networks

The last chapter introduced predictions and thereby Bayesian networks into the prototype.
The system automatically updates several conditional probability tables as well as
conditional tables for regions, averages and histograms. Adaptive prediction also produces
a useful byproduct: a success measure of Bayesian networks.

Bayesian networks and conditional tables are not only useful to implement predictions,
they can be the fundament for answering several questions. For example:

1. Do bats memorize previous water places and foraging areas and return to them?

2. Do bats show signs of lunaphobia?

3. How do certain conditions, e.g. weather or the current region of a bat, influence
their activities?

4. Do bats have personalities?
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Chapter 6 is a special case of inference in Bayesian networks. The basic approach can
be summarized by the query P (activityt+1 = X | activityt = Y, e1 = E1, . . . en = En),
where the current activity Y as well as available emissions E1, . . . , En are used to calculate
the probability distribution of X. Predictions also use and predict attributes of activities.

The general case is P (Hypothesis | Conditions), in which every random variable
is usable. Conditional tables for regions, averages and histograms are also available.
However, conditional average and histogram tables do not contain probabilities and
hence the Bayesian theorem does not apply. An output is only possible if there is
a conditional table for the random variable V . From now on, using these special
conditional tables is described by Regions(V | Conditions), Averages(V | Conditions)
and Histograms(V | Conditions).

Answering the first question on whether bats memorize previous water places and
foraging areas can be supported: A conditional region table ActivityRegions is assumed
to be available. It obviously depends on activityt and probably on other conditions.
Creating a table Regions(ActivityRegions | activityt = drinking) out of the avail-
able conditional region table probably yields results similar to table 7.3(a). The regions
R1, . . . , R4 are distinct water ponds far away from each other. Free variables allow to dig
in, an example is X in Regions(ActivityRegions | activityt = drinking ∧ time = X)
which may produce an output similar to table 7.3(b). Both results show clear preferences
for certain regions. Foraging areas can be examined in the same way. The resulting
tables need to be interpreted by domain experts in order to decide whether they support
a hypothesis. In this case, biologists need to assess whether a clear preference of R1 over
a long observation interval can be attributed to memory.

R1 R2 R3 R4
0.6 0.1 0.05 0.25

(a) Regions(ActivityRegions | activityt = drinking)

time R1 R2 R3 R4
Night1 0.9 0.05 0.0 0.05
Night2 0.3 0.1 0.1 0.5

. . . . . .

(b) Regions(ActivityRegions | activityt = drinking ∧ time = X)

Figure 7.3: Sample Results of Processing Conditional Region Tables
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7.4 Expected Activities

There is also the question of whether bats show signs of lunaphobia, i.e. whether the
visibility of the moon has influence on their behavior. In order to answer this question,
the brightness or visibility of the moon has to be available as an emission. The emission
has to be included in a Bayesian network for predictions and the random variables for
activities and their attributes have to be modeled to depend on the emission. The
following conditional tables should be produced:

1. P (activityt+1 = X | activityt = Y ∧ moon = M)
Compare transitions of activities or rather expected activities with and without a
visible moon.

2. Regions(activityt | moon = M)
Compare the location of activities.

3. Histograms(activityt | moon = M) or Averages(activityt | moon = M)
Compare the duration of activities.

In order to show that the moon has influence on the behavior of bats, at least one of
the corresponding conditional tables has to display significant differences regarding the
visibility of the moon.

All conditional tables can be exported in order to analyze them in suitable external
applications.

7.4 Expected Activities

Expected activities are a specialization of inference in Bayesian networks similar to
predictions. They are always of the form:

P (activityt | v1 = φ1 ∧ . . . ∧ vn = φn

∧ vn+1 ∈ {γ1
n+1, . . . , γl1

n+1} ∧ . . . ∧ vn+m ∈ {γ1
n+m, . . . , γlm

n+m})

All vi, i ≤ n + m are random variables and φj, j ≤ n are either possible values of vj

or free variables. For each vn+k, k ≤ m a restriction to lk possible values γs
n+k, s ≤ lk is

applied. The variable for activityt is always free. The result is a CPT and its conditions
are all used free variables.

This definition is similar to predictions, although it does not depend on live emissions.
It allows to predict behavior for certain conditions. Missing information leads to more
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aggregated results, e.g. P (activityt) only outputs a probability distribution table with
one row.

7.5 Personality of Animals

An approach to answer the question whether bats have personalities is to compare their
expected activities for certain conditions as well as attributes of activities to the average
behavior.

Domain experts have to decide which conditions for activities and attributes they
consider to resemble the personality. Restricting the definition to key characteristics
is advised, even though all collected data in conditional tables assigned to individual
animals can already be interpreted as the personality. It allows to examine this question
in a wide range of modeled Bayesian networks and to easily define groups of behavior,
e.g. conservative or wild bats.

Hence, the definition of the personality of animals should consist of several conditional
tables stated similar to expected activities:

• P (activityt | Conditions)

• Averages(attribute | Conditions)

• Histograms(attribute | Conditions)

• Regions(attribute | Conditions)

Of course, not all types of conditional tables have to be used and several tables of the
same type are allowed. Functions to determine the difference between conditional tables
have to be stated, since this highly depends on the domain.

If the applied definition is coherent and differences between its conditional tables to
the average are significant, then the question of whether bats have a personality can be
affirmed.

7.6 Activity Sequence Diagrams

In order to visualize the results of activity detection and prediction, activity sequence
diagrams are proposed. The axes of activity sequence diagrams are a time line as well as
distinct values (lanes) for the IDs of tracked animals. Each activity is displayed by a
rectangle in the appropriate lane and restricted to the detected interval in the time line.
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Events may also be blended into the lanes of the diagram. The diagram is structured
similar to activity patterns in [RLH09].

Bat 0

Bat 1

Bat 2

Bat 3

Bat 4

01.05.2014
20:00

01.05.2014
22:00

02.05.2014
00:00

02.05.2014
02:00

02.05.2014
04:00

02.05.2014
06:00

Activities

2014-05-02 4:00:00
sleeping
foraging
drinking
pausing

Figure 7.4: Sample Activity Sequence Diagram Presenting a Simulated Night

By inserting a separator, past detections can be distinguished from predictions. Fig-
ure 7.4 shows an example of an activity sequence diagram containing all elements of the
definition. The separator between past activities and predicted behavior is the vertical
red line at the time instant 2014-05-02 4:00. The diagram is an actual output of the
prototype. However, the displayed data stems from simulated activities, not detected
activities in the field.

7.7 Summary

Heatmaps and local convex hulls are state-of-the-art analyses. Heat matrices and
choropleth maps allow to display various types of interesting attributes related to
their location. Local convex hulls are used to determine home ranges and utilization
distributions.

This chapter also introduced inference in Bayesian networks. A notation for using
several types of conditional tables, e.g. regular CPTs as well as conditional average,
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histogram and region tables, is proposed. Special cases of Bayesian inference are
predictions in chapter 6, expected activities as well as the personality of animals.

Activity sequence diagrams allow to visualize both past sequences of activities and
predictions. Their structure is similar to activity patterns in [RLH09].
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The presented analyses in the last chapter already provided some results which were
generated by the prototype. They examine characteristics at several abstraction layers,
from position data to inference on behavior. This chapter provides an overview of how
data passes through the prototype or rather how several techniques are connected in
order to enable analyses for different abstractions.

Different stages are explained in more detail, for instance available operators in data
stream processing and event detection. Moreover, this chapter describes the integration
of predictions of activities into the prototype and other data stream systems.

8.1 Overview

Many techniques and analyses have been presented. Figure 8.1 shows the path data
takes through the prototype.

Heatmaps

LoCoH

Output
Events

Output
Activities

Output
Predictions

CPTs

Character

Inference

Expected
Activities

Position
Data

Detection:
Low Level

Events

Environmental
Data

Detection:
High Level

Events
Detection:
Activities

Prediction

Adaptive
Prediction

Figure 8.1: Path of Data Through the Prototype

Position data is pushed to external gnuplot and R scripts for heatmaps and local
convex hulls, which are both state-of-the-art analyses. Position data as well as additional
environmental data are further processed to low level events. Low level events are pushed
to the detection of high level events. They are emitted to the user and interpreted as
transitions for activity detection. Activities are emitted, too. The history of activities
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and their dependencies are aggregated in CPTs. The success of CPTs is measured and
the prediction of the previously most successful conditional table is displayed to the
user. The CPTs and success rates identified by adaptive prediction provide analyses for
the character of animals, expected activities and more generally inference on Bayesian
networks.

8.2 Simulator

Since the sensor network montioring basts is not yet deployed, event detection has to
be evaluated on synthetic data. The simulation framework STREAMIC [Ste13] was
extended with some more realistic behavioral patterns to be detected by the prototype.
The main goal is to simulate hunting behavior during the night.

Figure 8.2: Simulated Forest (Sketch)

Figure 8.2 shows the simulated forest. The forest consists mostly of trees, which are
depicted as hatched areas. Two water ponds allow simulated bats to quench their thirst.

The original approach of how bats find their food was kept up. Hundreds of simulated
insects are randomly spread across the forest. If a bat is hungry, the simulator randomly
selects an insect and the bat is heading for it. This was extended by randomly selecting
several insects and choosing the most nearby one. In order to include frequent changes
of direction, from time to time the target insect is replaced. Moreover, the bat does not
always succeed in catching the insect. If it succeeds, the movement track depicted in
figure 5.9 (page 59) is applied in which the bat circles in the air while consuming its prey.
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The simulator now includes some indicator to control the need of resting and an
indicator for saturation. The behavior was extended to rest if necessary, to drink from
time to time, to hunt if the bat is hungry and otherwise to randomly follow another bat.
Furthermore, the simulator gained values for the z-axis for movement tracks of bats.

8.3 Data Stream Processing

The fundament to data stream processing in the prototype are the semantics of
PIPES (section 4.2). All following operators are implemented for chronon streams.
Hence, a possible future optimization especially considering large windows is to switch
to general physical streams with variable time intervals.

8.3.1 Standard Operators: Projection and Selection

Selection and Projection are implemented in the same way as in [Krä07a] and relational
databases. For each tuple, Selection checks whether a given predicate is fulfilled. If it is,
the tuple is emitted. In PIPES, Selection is called Filter. Projection applies a mapping
function to a tuple in order to emit an altered one. In PIPES, it is therefore called Map.

8.3.2 Combining Streams: Union, Cartesian Product and Join

Union merges two streams of compatible types [Krä07a]. Its semantics are also exactly
the same as in the relational model.

The Cartesian Product “of two logical streams combines elements of both input streams
whose tuples are valid at the same time instant” [Krä07a]. The definition of the Cartesian
Product in PIPES and in the relational model differ.

Join is an optimization of the Cartesian Product and a following Selection: It combines
tuples of both input streams at the same time instant which fulfill a mutual predicate.

8.3.3 Window

The Window operator allows to combine tuples of several subsequent time instants.
The implementation corresponds to time-based sliding windows ωtime in [Krä07a]. It
“shifts a time interval of size w time units over its input stream to define the output
stream” [Krä07a].
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The interval may also be unbounded. For unbounded intervals, results are emitted at
each time instant. The general case assumes that infinite memory is available. However,
some queries can be optimized. For example the sum and average over values can use
immediate results and therefore do not need to be recomputed completely if values are
added.

8.3.4 Scalar Aggregation

Scalar Aggregation computes an aggregate from a set of elements in the same time instant,
for example the sum of a certain attribute of all tuples. Grouping is also possible and
was written as partition by in previous examples. With grouping, Scalar Aggregation
emits values for each group similar to the behavior of GROUP BY in relational databases.

If the Scalar Aggregation operator is applied after an unbounded window, certain
optimizations have to be considered due to the fact that actual systems do not have
infinite memory.

In order to speed up the generation of heatmaps, an operator GridAggregate was
implemented. It groups tuples according to their x and y attributes into a predefined
grid and applies aggregate functions. Moreover, GridAggregate emits aggregates for
empty groups.

8.3.5 Terrain Features

The operator RegionAggregate provides the same functionality as GridAggregate for
user-defined regions, e.g. polygons. Aggregates for empty regions are emitted in this
operator, too.

A region test inRegion(x, y, region) is available in the Projection operator. Since an
animal ID is not part of the signature, it applies hard discretization.

Soft discretization is available in an additional operator. This operator stores a state
for each animal and region and decides whether an animal is within a region based on
the previous state, the current position and the inner and outer limits of the region.

8.3.6 Real-Time Considerations

The urgency of results depends on the biologists question being asked. Long-term
analyses and short-term questions on current positions obviously have different temporal
requirements. Hence, Real-Time in this context does not stand for hard real-time
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conditions to be satisfied. Its meaning resembles the term urgent and requires to not
wait for too long for missing data before answering a question.

The urgency of heatmaps, local convex hulls and inference in Bayesian networks is not
very high. The necessary data is collected for several hours or even days. On the other
hand, current predictions of activities or even displaying the current position of a certain
bat should not wait for unrelated data of another animal in the same stream. Obviously,
on simulated data this is not an issue.

In the actual deployed system, an additional operator should therefore be implemented
which enforces that the system only waits for a certain amount of time until a tuple
indicating missing data is issued and operators are allowed to process the next time
instant. The operator should discard tuples which arrive too late.

8.4 Event Detection

The implementation of event detection has been restricted to patterns which are necessary
to support all previously introduced events. All event operators work on two events, e.g.
A || B. If event consumption is neglected, binary operators suffice. For sequences, it is
assumed that at least the first event is prefixed with every.

The restriction primarily shows up at event consumption: It is rarely needed and
all examples use no more than one event consumption per pattern. In order to not
unnecessarily increase complexity, event consumption has been restricted to binary
operators without covering the general case. If this feature is required, either existing
CEP systems should be integrated or the implementation has to be extended. The
following binary pattern operators are available:

1. every A ->(δ) B

2. every A ->(δ) *B

3. every A ->(δ) every B

4. every A ->(δ) every *B

5. every *A ->(δ) B

6. every *A ->(δ) *B

7. every *A ->(δ) every B

8. every *A ->(δ) every *B

9. A || B

10. *A || B

11. A || *B

12. *A || *B

13. A + B

14. *A + B

15. A + *B

16. *A
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With event consumption, the order of patterns is crucial. For each new event, all
patterns are called sequentially unless one pattern consumed the event. If a second event
to match is still missing, then the pattern adds the new event into a waiting list. Events
in waiting lists can be consumed later, too. Hence, if an event in a waiting list was
consumed, each pattern is notified to remove that event from its waiting lists.

The or operators as well as a single consumption can be useful at the end of a rules
sequence to prevent later matches.

8.5 Bayesian Networks in Data Stream Systems

Chapter 6 introduced Bayesian networks and conditional probability tables (CPTs) into
the prototype. This section elaborates how they can be expressed in existing data stream
systems and how they were implemented in the prototype.

8.5.1 Conditional Probability Tables as Streams

Without loss of generality, table 8.3(a) sketches the goal of implementing the aggregation
of CPTs as streams. Table 8.3(b) depicts all necessary streams. One input stream
Input is available. If actually several input streams are present, they can be joined into
one. The input stream has at least two attributes: value for the observed output and
situation for the random variable.

Input Output
A B

S P (A|S) P (B|S)
T P (A|T ) P (B|T )
(a) Elements of a CPT

−→
Input

Output
A B

S PAS PBS
T PAT PBT

(b) Streams a CPT

Figure 8.3: Sketch of CPTs as Streams

Each possible output is related to all possible values of the random variable. Hence, in
this example there are four output streams: PAS, PAT, PBS and PBT. Generally, each cell
in a CPT has its own stream.

Listing 8.1 defines the stream PAT to approximate P (A|T ). It counts the situation S

and relates it to the amount of outcomes A for this situation. Obviously, missing previous
situations of S yield an empty row and errors. This case has to be treated separately.
Some possible strategies are to output a uniform distribution, zero probability or a
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value representing unknown. Since these strategies can be implemented by simple IF
expressions and need to be chosen for each scenario, listing 8.1 does not include a strategy
and assumes previous situations S. The other streams are formulated accordingly.

1 select COUNT(cell.value) / COUNT(row. situation ) AS p
2 from input as cell [range unlimited ],
3 input as row [range unlimited ]
4 where cell. situation =’S’
5 and cell.value=’A’
6 and row. situation =’S’;

Listing 8.1: One Cell of a CPT

8.5.2 Predictions as Streams

Usually, one CPT should suffice. If the whole network is necessary, for example to cover
the case of missing data, then a new CPT can be built which has all available and
used random variables as its conditions. Bayes’ theorem allows to formulate outputs
depending on given input. The continuous queries to build cells for the new CPT join
all current cells of necessary CPTs. Hence, without loss of generality, one CPT suffices.

Listing 8.2 assumes a CPT similar to table 8.3(b) is used to predict the output
A or B. The most likely output is emitted with its probability or rather belief state.
The prediction depends on the current situation, which is provided in an additional
stream input. Larger CPTs lead to if cascades for predictions, but nonetheless can be
implemented similarly.

1 select
2 (if input. situation =’S’
3 then (if PAS.p > PBS.p then ’A’ else ’B’)
4 else (if PAT.p > PBT.p then ’A’ else ’B’)) as predicted ,
5 (if input. situation =’S’
6 then MAX(PAS.p, PBS.p)
7 else MAX(PAT.p, PBT.p)) as belief
8 from input [rows 1],
9 PAS [rows 1], PBS [rows 1],

10 PAT [rows 1], PBT [rows 1];

Listing 8.2: Prediction as a Stream
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8.5.3 Actual Implementation

In order to implement predictions with continuous queries, a huge amount of stream
definitions are necessary. The actual operations to be implemented are rather simple:
update cells or rows in a table and retrieve values of cells in selected rows. Hence,
the different data structures are implemented separately. The following tables were
implemented:

1. Regular Conditional Probability Tables

2. Conditional Average Tables

3. Conditional Region Tables

4. Conditional Histogram Tables

5. Conditional Median Tables

The signature of all tables is rather similar:

• addEvidence(Input1, . . . , Inputn, Output): Update the conditional table

• predict(Input1, . . . , Inputn): Predict using previous evidence

Adaptive Prediction requires to measure success and to use the most successful
conditional table. Its data structure shares the same signature and passes evidences to
its internally managed regular conditional tables.

8.6 External Scripts

Each abstraction of position data, namely streams, events, activities and predictions,
allows to execute external applications. For example, heatmaps and local convex hulls are
generated by piping data of current time instants into gnuplot and R scripts. Moreover,
activities and predictions are visualized by gnuplot in an activity sequence diagram.

The same mechanisms that support visualizations can be used to fire alarms and
trigger experiments without the need to continuously examine output streams of the
prototype in an external application.

88



8.7 GUI

8.7 GUI

A graphical user interface visualizing data from the prototype was implemented with
HTML5 and WebGL. WebGL is a cross-platform API used to create 3D graphics in
a browser [Khr14b]. Many web browsers already support it, for example Firefox 4.0,
Safari 5, Opera 12 beta and Chrome [Khr14a].

This approach was primarily chosen because of its platform independence and since
HTML allows to easily format and present various kinds of data. Previous web standards
had been supported for a long time, which may render frequent adjustments of the
prototype for newer APIs unnecessary.

The visualization uses available javascript libraries jQuery1 for its selector scripts
and the WebGL library three.js2. Bats can be selected by their node on a map and
available analyses are listed and linked. Events, activities and predictions are displayed.
Figure 8.4 shows a screenshot of the visualization in a browser.

Figure 8.4: GUI Implemented in WebGL

1 http://jquery.com
2 http://threejs.org
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8 Implementation

8.8 Summary

This chapter starts with an overview of how data passes through the prototype and
thereby how several techniques are connected. Changes to the simulation framework
STREAMIC are outlined afterwards. More realistic behavioral patterns were added to be
detected in the prototype and to support an evaluation of the prototype and user-defined
continuous queries, events, activities as well as further analyses.

The fundament to data stream processing in the prototype are the semantics of PIPES.
Implemented operators are explained in detail. Some new data stream operators were
added to simplify execution plans in regard to spatial information. Afterwards, available
operators for event detection were listed.

Integrating Bayesian networks into data stream systems is explained in detail. Con-
ditional Probability Tables and predictions were expressed as streams. The actual
implementation in the prototype is an optimization of the presented approach which
updates tables instead of a stream for each single cell in a CPT.

All abstractions allow to execute external applications, for example to trigger ex-
periments or to generate visualizations in external gnuplot and R scripts. Finally, the
implemented GUI which uses HTML 5 and WebGL was introduced.
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This chapter examines the prototype, techniques and notations in regard to several
aspects. It is assessed whether objectives are achieved. The impact of adaptive prediction
on precision of activity predictions is demonstrated. Detection of events is examined
in regard to expressibility of temporal relationships between events as well as actual
implemented events. Finally, the influence of data quality on analyses is discussed.

9.1 Objectives

Biologists have several assumptions on the behavior of bats and hypotheses on probable
behavior. All expected behavioral patterns can be evaluated: Assumed foraging patterns
can be detected and biologists can compare results to their observations or video footage.
The questions of memorized water places and foraging areas as well as avoidance of open
places can be answered by inference in Bayesian networks and conditional region tables.
Whether bats show signs of lunaphobia can also be decided by inference in Bayesian
networks. A possible definition of the personality of an animal is sketched in section 7.5

Territorial behavior may be examined by comparing LoCoHs of different bats and
other species. The ability to answer questions of the starting age of social activities and
whether hunting is taught to a bat by its mother depends on whether very young bats
can carry the sensor nodes. If this is possible, events for social activities may be defined
and their frequency of detection can be related to the age of a bat. Whether hunting is
taught to a bat by its mother can be assessed by comparing activity sequences as well as
the spatial distance of a child to its mother.

With execution of external applications, the prototype provides a technique to support
experiments. External gnuplot and R scripts of several state-of-the-art analyses were
integrated into the prototype. The same mechanisms to call those scripts can be used to
easily add new analyses.

Notations for specifying events and activities have been elaborated in chapter 5.
Continuous queries can be interpreted as low level events. High level events are patterns
over low and high level events. Modeling of activities is similar to modeling state charts.
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Events are used for transitions between activities. Hence, modeling techniques for events
and activities are provided by the prototype.

Several visualizations are provided:

1. Heat matrices (regular heatmaps)

2. Choropleth maps or rather thematic maps

3. Local Convex Hulls (LoCoHs)

4. Activity Sequence Diagrams

Users of the prototype are not restricted to these visualizations. External applications
can be executed by every abstraction, hence data can be emitted to and visualized by
external scripts, for example to draw a movement track in gnuplot. A graphical user
interface implemented with HTML 5 and WebGL is provided as well.

The influence of data quality on different analyses is assessed in section 9.5 in regard
to tolerance to errors in measurement and the availability of measured values of the
z-axis. In order too cope with possible data quality problems, alternative approaches for
some events were sketched where this might be necessary.

The presented techniques and notations are not restricted to bats. Models for activity
transitions as well as all presented analyses are applicable to a wide range of species.
The notation for continuous queries and event patterns only include some parts which
were specifically added for the scenario: functions and operators for terrain features.
However, region definitions are useful for many scenarios and their notation is certainly
not restricted to BATS.

In summary, all objectives which were presented in section 1.3 are achieved.

9.2 Flexibility

Notations were presented to specify activities, events and terrain features. All important
characteristics of behavior are user-defined. Hence, the only difficulty to use another
model describing activities is creating the model and implementing events which were
stated in the model as a transition.

If the model was adapted for another species, all already implemented analyses can
be reused. Heatmaps and local convex hulls are useful analyses for a wide range of
species. Moreover, predictions of behavior may only need minor changes in the suspected
influence relations of available emissions. Inference on behavior is also available as soon
as data is gathered and CPTs are sufficiently filled.
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Additionally, changing the source of position data is not a problem. For example, the
prototype could use position data gathered from GPS sensors attached to larger animals
or from mobile phones. Events only need to know x, y and possibly z values of positions
as well as expected precision.

In summary, the presented techniques are flexible in regard to other models and event
definitions for different species as well as the source of examined position data.

9.3 Predictions

In order to separately evaluate the techniques to detect and predict activities, a simulator
emitting only activities and their attributes has been elaborated. This allows to precisely
restrict randomness for each activity and attribute.

9.3.1 Activity Simulator

Figure 9.1 shows the basic approach to generate activity sequences which are used to
evaluate predictions. A user-defined timespan restricts the simulation. At first, the
simulator checks whether the bat is sleeping. If it is sleeping, then the wakeup time and
next sleeping interval has to be determined. If it is not sleeping, but the next sleeping
interval already started, then Sleeping is the next activity. If the last activity has not
been Foraging, then it is randomly assigned according to table 9.1. If Foraging was
not randomly assigned or if it was the last activity, then Pause or Drinking is randomly
assigned according to table 9.2.

#ateInsect < 7 7 - 10 ≥ 10
P(Foraging) 0.8 0.7 0.2

Table 9.1: Roll a Dice: Foraging

#watered 0 1 ≥ 2
P(QuenchingThirst) 0.6 0.3 0.05
P(Pause) 0.4 0.7 0.95

Table 9.2: Roll a Dice: QuenchingThirst / Pause
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Figure 9.1: Simulator of Activity Sequences

9.3.2 Available Data

The simulated behavior is not affected by many influences. Table 9.1 shows that already
eaten insects are important. In table 9.2 the previous visits at watering ponds affect
probabilities. Since both values change during a night, time is considered as well.
Figure 9.1 clearly shows, that the previous activity restricts possible following activities.
Hence, four random variables are used for predictions: Time, Before, Ate, Drank.

Drank and Ate are both divided into nothing, some and a lot. For drinking, some
means one previous drinking activity, whereas all other values are nothing respectively
a lot. Ate is also aggregated by counting previous activities: some means one or two
previous foraging activities. Time is partitioned to daytime, dusk, night1, night2 and
dawn.
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9.3.3 Results

All four available random variables have been used in different CPTs. The case of
no available prediction was considered with a backup CPT which has no conditions.
Other used CPTs are hypotheses on possible influence. Adaptive Prediction uses those
six hypotheses, the backup CPT and the success rates of all CPTs to always emit the
prediction of the previously most successful CPT.

Table 9.3 shows all hypotheses which are listed in the left column. The success is
measured in 50 test runs for each configuration: 1 week, 1 month and 3 month with
and without learning samples of 20 bats for 14 days. The observed timespan of learning
data was chosen since it is assumed that bats are going to carry the mobile nodes for at
least this timespan. The sample size of 20 bats also is in the range of observed bats in a
possible initial deployment. Adaptive prediction assumes that a CPT is reliable enough,
if two previous occurences of the current situation were observed.

Type 1 w 1 mo 3 mo 1 w 1 mo 3 mo
- - - 20/14d 20/14d 20/14d

- (Backup) 13.73% 35.54% 40.02% 41.56% 42.06% 42.02%
Ate 29.05% 37.33% 43.81% 45.55% 46.68% 46.77%
Time, Before 36.92% 60.83% 66.82% 71.14% 71.82% 71.08%
Time, Ate 29.47% 45.13% 49.62% 52.32% 52.45% 51.88%
Ate, Before 42.51% 58.79% 63.81% 65.52% 66.88% 66.71%
Time, Ate, Before 29.17% 56.44% 64.98% 71.00% 71.46% 71.03%
Time, Ate, Before, Drank 17.00% 49.25% 62.79% 72.95% 73.85% 73.69%
Adaptive Prediction 48.90% 65.27% 70.09% 73.15% 74.03% 73.91%

Table 9.3: 50 Test Runs: Advantage of Adaptive Prediction Over Time

Table 9.3 clearly shows that over time all CPTs gain precision. Moreover, at least
for the test runs, adaptive prediction improved the precision of predictions. At the
beginning, adaptive prediction improved the emitted predictions significantly. Over time,
it will only use the single most successful CPT and therefore their success will converge.
Since initial predictions are more precise, it still yields a better success rate than the
single most successful CPT.

Table 9.4 shows the overall success of predictions for different timespans. For no
learning data and one observed bat, 50 test runs were executed for each timespan. The
average success rate as well as the best and worst single test run are depicted. The
predictions quickly improve over time until they can be considered useful after one week.
The success rates should be interpreted considering the amount of randomness in table 9.1
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Timespan Average Best Worst
1 day 18.16% 30.77% 0.00%
2 days 26.04% 36.36% 8.33%
1 week 49.39% 57.35% 39.34%
2 weeks 59.26% 69.06% 52.52%
1 month 65.84% 69.93% 60.15%
2 months 68.47% 72.70% 64.12%
3 months 70.09% 73.61% 67.38%
6 months 72.17% 74.66% 69.27%
1 year 72.71% 73.75% 71.10%

Table 9.4: 50 Test Runs: 1 Bat, No Previous Data

and table 9.2. If actual bat behavior is less random, the approach most likely yields even
better predictions.

Timespan Average Best Worst
1 day 81.07% 100.00% 50.00%
2 days 76.48% 94.12% 56.52%
1 week 74.98% 83.33% 64.18%
2 weeks 73.71% 80.62% 61.07%
1 month 74.03% 77.89% 68.51%
2 months 73.67% 77.45% 70.31%
3 months 73.62% 76.35% 69.93%
6 months 73.71% 75.92% 70.64%
1 year 73.73% 75.04% 72.04%

Table 9.5: 50 Test Runs: 1 Bat, Previous Data: 20 Bats Over 2 Weeks

Table 9.5 shows the overall success of predictions if previous learning data is available.
Obviously, the results are useful from the beginning.

In summary, predictions in the field are not going to add value in the first few days.
After a short period of gathering enough learning data, predictions will be useful from the
beginning of each observation. The precision of predictions depends on the hypotheses
or rather the implemented CPTs as well as the randomness of bat behavior.
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9.4 Detecting Events

In order to examine how well events can be expressed in the prototype, the notation of
high level events has been examined in regard to which temporal relationships it can
reproduce. Moreover, it was assessed whether the prototype is able to detect events on a
synthetic position data stream.

9.4.1 Temporal Relationships Between Events

In order to prove that the notation for high level events presented in section 5.3 is
expressive enough for all possible temporal relations between two events, patterns are
provided for each relation. Table 9.6 is an overview of all thirteen possible relations
listed by [All83].

Relation Symbol Symbol for
Inverse

Pictoral
Example

X before Y < > XXX YYY

X equal Y = = XXX
YYY

X meets Y m mi XXX
YYY

X overlaps Y o oi XXX
YYY

X during Y d di XXX
YYYYY

X starts Y s si XXX
YYYYY

X finishes Y f fi XXX
YYYYY

Table 9.6: The Thirteen Possible Relationships [All83]

The following list contains expressions for each relation:

• X before Y:
x = X ->(∞) Y (end < y.start)

• X equal Y:
x = X || Y (start = x.start ∧ end = x.end)
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• X meets Y:
X ->(0s) Y

• X overlaps Y:
X || Y

• X during Y:
x = X || Y (x.start ≥ start ∧ x.end ≤ end)

• X starts Y:
x = X || Y (start = x.start)

• X finishes Y:
x = X || Y (end = x.end)

Hence, the notation of high level event patterns allows to express all possible temporal
relations.

9.4.2 Expressing Events

The sensor network is not yet deployed and there are still many assumptions on the
behavior of sensors as well as the behavior of bats. Hence, event detection is tested on
synthetic position data streams.

This evaluation does not check the ability to express all events which need to be
detected in the field, since it is highly probable that event definitions will change according
to actual gathered position data. Instead, one exemplary event is evaluated. Other
events can be examined in a similar way.

However, it is more sensible to use the simulator in order to check how different
assumptions would impact the behavior and possible patterns. A full evaluation of
detectability of events and suitability of their notation for the scenario should be
elaborated on actual data collected in the deployed sensor network.

The event which is evaluated is ateInsect. This section assumes that no z-axis is
available or sufficiently reliable. It is expected that after successfully catching an insect
a bat flies in circles for at least 60s while eating its prey. Moreover, it grubs for at least
22s until it finds a suspected beetle. The simulation circles for around 80s and grubs 25s

for the insect. The pattern pause22s ▷ flewInCircles60s was used to detect ateInsect.
The following streams were implemented according to section 5.6:

1. SubsequentDistances

2. TotalDistance22s (for paused22s)
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3. TotalDistance5s (for paused22s)

4. paused22s

5. Steps 1 to 5 of flewInCircles

The streams paused22s and flewInCircles were interpreted as low level events.
Listing 9.1 depicts all pattern definitions, which also provide duplicate elimination.

1 create event
2 ateInsectDummy (a.ID) ::= a= paused22s ->(10s) flewInCircles ;
3

4 create event
5 ateInsectDuplicate (a.ID) ::= a= ateInsect || * ateInsectDummy ;
6

7 create event
8 ateInsect (a.ID) ::= * ateInsectDummy ;

Listing 9.1: Definition of ateInsect
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Figure 9.2: Simulated Movement Track

Figure 9.2 shows the simulated movement track which is examined. In order to also
incorporate time, the color of a line changes during the hunting session. Ellipses represent
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the assumed circular flights. In order to doublecheck, the simulator had to emit its
internal state additionally to position data: six successful occurences of eating an insect
were simulated.

Table 9.7 shows an excerpt of detected events which were defined in listing 9.1 and
table 9.8 shows all emitted ateInsect events.

Type Start End
ateInsectDummy 68 150
ateInsect 68 150
ateInsectDummy 69 151
ateInsectDuplicate 68 151
ateInsectDummy 70 152
ateInsectDuplicate 68 152
. . . . . .
ateInsectDummy 903 985
ateInsect 903 985
ateInsectDummy 904 986
ateInsectDuplicate 903 986
. . . . . .

Table 9.7: Excerpt of Events (Listing 9.1)

Type Start End
ateInsect 68 150
ateInsect 903 985
ateInsect 2480 2562
ateInsect 2747 2829
ateInsect 3133 3215
ateInsect 3293 3375

Table 9.8: Detected AteInsect Events

In summary, all simulated ateInsect events were detected and there were no false
positives. If the assumptions on the behavior are in accordance with reality, then no
z-axis is necessary. Moreover, at least ateInsect is expressable in the prototype.

9.5 Influence of Data Quality on Analyses

Data quality influences several abstractions of analyses. Hence, this influence is discussed
separately for each abstraction level.
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9.5.1 Low Level Events

The influence of uncertainties and the availability of the z-axis have varying impact
on low level events. Hence, all events which were presented in previous chapters are
examined:

P ausedtimespan and F lewtimespan

The distinction of pausedtimespan and flewtimespan does not require exact positions.
However, measured positions should not continuously bounce. If expected random jumps
of measurements within a radius are larger than regular flights, then pausedtimespan can
no longer be detected. Flewtimespan tolerates larger errors in measurement and continuous
bounces if only distances have to be detected which are significantly longer than expected
errors.

F lewInCircles

The event FlewInCircles is already specified without expecting circular trajectories at
all. The definition assumes that during a defined timespan a total distance is exceeded
and most of the measured points are in a defined radius. The event is very tolerant to
errors in measurements, if the radius is larger than expected errors and a reasonable
minimum for the total distance is applied.

RisenUp and W entDown

Both events obviously depend on the existence and reliability of the z-axis. For the
purpose of detecting ateInsect, the measured z-axis should at least indicate whether
an animal is above the ground. Otherwise, both events are useless and should not be
specified at all.

EnteredRegion(X) and LeftRegion(X)

If soft discretization is applied and the regions to be detected are sufficiently large,
then the events enteredRegion(X) and leftRegion(X) are very tolerant to errors in
measurement. The border has to be specified according to expected errors. After that,
jumps within an anticipated radius are no problem at all.
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F lewInSpeedCorridorrange,timespan, accelerated, decelerated

The tolerance of flewInSpeedCorridorrange,timespan to errors in measurement depends
on the characteristics of errors. If errors shift movement tracks to another location, then
speed roughly remains the same. This shifting may be caused by applying the Kalman
filter to positions. In this case, flewInSpeedCorridorrange,timespan should be tolerant to
measurement errors. If random jumps are expected, then there are several strategies,
for example applying the Kalman filter. Resampling to fewer points may also decrease
the effects of jumps. If this does not sufficiently help to approximate the speed, then
the range should be extended. In summary, flewInspeedCorridorrange,timespan should
be tolerant to measurement errors, if the correct strategy for actual error characteristics
in the field is applied.

The events accelerated and decelerated also depend on a good approximation of speed.
The strategy to enable flewInSpeedCorridorrange,timespan can also be applied to those
events. Since the observed timespans are shorter, low data quality has higher influence
on the detection.

changedDirection

The observed timespan for one segment should depend on the errors in measurement.
ChangedDirection should be reliably detectable if the length of a segment is significantly
longer than errors in measurement. At foraging speed, a bat may fly 4 to 10m in a second.
If changedDirection has to be detected within a timespan of 15 seconds, the length of
each half of the trajectory should be at least 30m. Hence, data quality will definitely
influence the angle of changes. Generally changing the direction should nonetheless be
detectable even for deviations of tens of meters.

met(X, Y )

The event met(X, Y ) can rely on both position data and the meeting stream. Hence, it
can use the alternative which shows higher precision in the field. The less precise stream
may be used as a sanity check.

9.5.2 High Level Events

The influence of data quality on high level events depends on their combination of low
level events. Hence, the events paused and flew as well as flewInSpeedCorridorrange
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are pretty tolerant to errors in measurement. The events slowHuntingF light and
highTransitF light depend on flewInSpeedCorridorrange and are therefore tolerant to
errors as well.

The most problematic high level event is ateInsect. It directly depends on the
availability and reliability of the z-axis, since it contains risenUp and wentDown. If
the z-axis is definitely not available or sufficiently reliable, then the behavior can be
approximated with a less accurate pattern:

pauseδ ▷ flewInCircles.

The parameter δ has to be estimated by biologists and should anticipate errors in
measurement. Of course, whether this pattern suffices for actual bat behavior has to be
evaluated on real data.

9.5.3 Activities and Predictions

Events are used as transitions between activities. There are hard to distinguish activities,
which are grouped to flying and resting. The resting activities resembling sleeping and
pausing only rely on whether paused can be detected. They are distinguished by the
duration of a break. Errors in measurement might influence the detection of the duration
in the range of several seconds to a minute. Since the sleeping activity takes several
hours, the effects of data quality on distinguishing sleeping and resting is insignificant
if paused can be detected at all.

The three flying activities are harder to separate. If the event ateInsect is not
available, characteristics of the movement track have to be used to detect hunting, e.g.
a rather low speed and frequent changes of the animals direction. Transit flights are
faster and the direction rarely changes. Hence, transit and hunting depend on a reliable
detection of flewInSpeedCorridorrange. It may be necessary to change specified speed
corridors if errors in measurement are worse then expected. Distinguishing hunting and
drinking depends on the specified regions for water ponds. If regions for water ponds
are larger than expected errors, drinking can reliably be detected. However, the data
quality of region definitions is significant.

The definitions of activities do not depend on the availability of the z-axis. Overall,
they are tolerant to errors in measurement.

Values of observed random variables, e.g. temperature and humidity, are partitioned
into a small amount of intervals to keep CPTs manageable. Rough classifications do not
rely on precision, hence observed random variables and thereby CPTs are insignificantly
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influenced by measurement errors. Since predictions only depend on the reliable detection
of random variables and activities, they do not depend on the availability of the z-axis
and are tolerant to errors in measurement, too.

9.5.4 Visualization

Heatmaps and Local Convex Hulls are state-of-the-art methods to visualize position data
in larger areas. Especially regular rastered heatmaps are preferably coarse-grained and
therefore tolerant to errors in measurement. Given that regions in choropleth maps are
sufficiently large, this holds for choropleth maps, too. Local convex hulls are, similar to
heatmaps, also detected for larger observation areas. Deviations in the range of meters to
tens of meters may influence the position of boundaries in local convex hulls. Nonetheless,
the shape of LoCoHs should roughly remain.

9.6 Summary

This chapter starts with a discussion on whether all objectives were achieved and affirms
this question. Afterwards, the flexibility of the prototype in regard to other species and
different data sources is explained.

In order to evaluate predictions, a simulator only emitting activities and their attributes
is elaborated. With this simulator, results of several CPTs as well as Adaptive Prediction
with different amounts of learning data and observation intervals are compared. Adaptive
Prediction improves the precision of predictions.

The expressibility of temporal relationships between events was assessed. The proposed
notation is able to express all thirteen possible relations listed by [All83]. Moreover,
expressing events which are necessary for this scenario was exemplarily elaborated for
ateInsect.

Finally, the influence of data quality on analyses was discussed. Most stated events are
pretty tolerant to errors in measurement. The z-axis is not necessary. However, a reliable
z-axis is still desirable in order to increase precision and to reduce false positives.
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Chapter 1 introduced the objectives of this thesis. Biologists should be supported in
answering questions on the behavior of bats. Moreover, mechanisms should be provided
which trigger experiments and enable integration of external processing of data. Events
and activities were chosen to describe animal behavior. Hence, the prototype provides
notations and detects user-defined events and activities. Moreover, the prototype provides
several state-of-the-art and new visualizations. The influence of data quality on analyses
was assessed and proposed notations and techniques are applicable to a wide range of
problems. All objectives are achieved.

This thesis was elaborated in the context of the DFG research group 1508 (BATS). The
scenario is introduced in chapter 2. Furthermore, the chapter states biologists questions
on the behavior of the greater mouse-eared bat.

Afterwards, projects related to BATS are presented. Aspects of the notation and
implementation of related work are incoroporated into the presented approach, for
example the integration of data stream processing and complex event processing as well
as notations of terrain features.

Chapter 4 introduces the fundamentals to the presented approach. The model of
PIPES was chosen for data stream processing in the prototype, since its operators
are well-defined and the model emphasizes on application time. Esper and its Event
Processing Language (EPL) had impact on the notation and approach to event detection.
Both systems as well as techniques of machine learning are covered in this chapter.

The main aspect of this thesis are events and activities. Chapter 5 introduces the
terms event and activity and provides several notations for different abstractions. Events
are separated into low level events and high level events. Low level events are results
emitted from regular continuous queries in the data stream processing model which are
interpreted as events. High level events are patterns over low and high level events and
therefore integrate complex event processing into the proposed approach. In order to
model activities, UML state diagrams are extended with revision transitions and aliases.
It has been proven that the proposed notation for event patterns is able to express all
temporal relations between two events. Several examples of events and activities which
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are important to the scenario have been exemplarily implemented in order to show that
they can be expressed in the proposed notations.

The definition of activities enables to use Dynamic Bayesian networks to predict them.
For the purpose of simplifying the notation, domain experts state Bayesian networks
that consist of environmental emissions without any state transition and the transition of
animal state. Suitable random variables to be used in Bayesian networks are presented.
The approach to predict activities is also applied to attributes of activities. Adaptive
prediction is proposed in order to improve the precision of predictions. In the evaluation
chapter, adaptive prediction was compared to single CPTs and always yielded better
results.

Heatmaps, LoCoHs and activity sequence diagrams are presented in chapter 7.
Moreover, inference on Bayesian networks is introduced. Special cases of inference
are expected activities and a proposed definition of personality of an animal.

Chapter 8 explains the implementation of the prototype in more detail. Available
operators of data stream processing are described. Additional operators for terrain
features are introduced. Available operators for event detection are listed afterwards.
The prototype supports event consumption. Integrating predictions into the prototype as
well as into data stream systems in general is explained. An existing simulation framework
was extended with more realistic behavioral patterns in order to evaluate their detection.
The evaluation in chapter 9 uses synthetic data of the altered simulation framework to
show that the prototype is able to detect complex patterns like the consumption of an
insect after a successful hunt.

Additionally to already summarized results of the evaluation chapter, the effects of
data quality on the detection of events and activities as well as on results of predictions
and visualizations was discussed. The z-axis is not necessary to detect events in this
scenario. Most of the stated events are pretty tolerant to errors in measurement or can
be expressed differently to anticipate lack of precision.

Of course, there are still topics which need to be tackled in the future. The notation
and approach to activity detection assumed that at any time instant exactly one activity
could be assigned. A notation incorporating nondeterminism could be used to cover
exceptions to this assumption and to avoid retroactive revisions of already emitted
activities.

If sensors produce several hypotheses on the position of a tracked object, all hypotheses
could be used in the proposed abstraction layers. This would significantly increase
complexity, but could improve precision of event and activity detection as well as
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predictions and analyses. Predictions of events would allow to further support experiments
and they could improve predictions of activities. Conditional tables could also be enhanced
to support continuous functions, which could improve inference.

Moreover, in this scenario positions are measured by one base station and passed to
the prototype. If mobile nodes could measure their own position, which for example is
the case by using GPS sensors, then distributed processing and distributed execution
plans deserve a closer look. If mobile nodes process their position data to events and
activities themselves, then application time depends on the precision of local clocks.
The detection of events concerning different tracked objects could use vector clocks to
anticipate effects of divergent clocks.

Finally, the presented notations and techniques should be applied to other problems.
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Activity

Every observed object performs some activity at each time instant. Two activities
cannot be valid for the same object at the same time. A notification of an activity
has to include the related tracked object. A sequence of activities resembles the
behavior of an animal.

Activity Sequence Diagram

Activity sequence diagrams visualize sequences of activities and predictions. The
axes of activity sequence diagrams are a time line as well as distinct values (lanes)
for the IDs of tracked animals. Events may be blended into the lanes of the diagram.

Adaptive Prediction

Using the previously most successful conditional table to predict the next activity.

Alias

State which has its own in- and outgoing transitions, but is visible to the user as
another state. Useful for dummy states and more complex networks and rules of
transitions.

Annotation

An annotation is any additional data that is attached to an event.

Baum-Welch Algorithm

The Baum-Welch algorithm is a well-known iterative approach for adjusting model
parameters in a ↑Hidden Markov Model [RJ86].

Bayesian Network

A Bayesian network is a directed acyclic graph in which every node is labeled with
information on its probability distribution [RN04].

Broker Operator

The broker operator enables time-coordinated processing of cyclic queries [Bol11].
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Central Station

The central station in BATS is a common desktop or laptop computer communi-
cating with the ↑Stationary Sensor Nodes. It stores gathered data and executes
the presented methods and techniques to analyze and process position and envi-
ronmental data streams.

Choropleth Map

Choropleth maps are common approach to map data to regions of arbitrary
shape. Based on some metric, regions are colored following a color scale [Yau11].
Choropleth maps are a special case of ↑Heatmaps.

Complex Event Processing

“The complex event processing model views flowing information items as notifica-
tions of ↑Events happening in the external world, which have to be filtered and
combined to understand what is happening in terms of higher-level events.” [CM12]

Concatenation

A concatenation is a ↑Pattern of immediately following ↑Events. In the context of
↑Spatio-temporal Predicates, the concatenation P ▷ Q combines two immediately
following spatio-temporal predicates P and Q [BBBB10].

Conditional Average Table

Conditional average tables are similar to ↑Conditional Probability Tables, but
display averages instead of probabilities. Continuously updating a conditional
average table is trivial. Conditional averages can directly be emitted as possible
lengths of activities or for other attributes.

Conditional Histogram Table

Conditional histogram tables are similar to ↑Conditional Average Tables, but display
histograms instead of averages. Continuously updating a conditional histogram
table is trivial. Conditional histogram tables are intended to be interpreted by
domain experts.

Conditional Median Table

Conditional median tables are similar to ↑Conditional Average Tables, but display
the median instead of an average. The median requires a full history of previous
values. A conditional median table is also only intended for results visible to
domain experts.
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Conditional Probability Table

A conditional probability table (CPT) represents a conditional probability distri-
bution of discrete random variables [RN04].

Conditional Region Table

Conditional region tables are ↑Conditional Probability Tables which display the
probability of regions or sets of regions.

Contextual Data Repository

A contextual data repository is an external source of knowledge that provides
contextual data, e.g. a database of terrain features. It is a source for ↑Annotations.

Continuous Query

Continuous Queries “run continuoulsy over a period of time and incrementally
return new results as new data arrives” [GÖ03].

Data Stream Management System

A Data Stream Management System (DSMS) manages schema definitions of incom-
ing ↑Streams as well as ↑Continuous Queries and offers access protection [MW13].

Data Stream Processing

In the data stream processing model, ↑Streams of data coming from different
sources are processed to produce new data streams as an output [CM12].

Data Stream System

A Data Stream System (DSS) consists of a ↑Data Stream Management System,
data stream definitions and stored ↑Continuous Queries [MW13].

Dynamic Bayesian Network

Dynamic Bayesian Networks (DBNs) extend ↑Bayesian networks with time and
allow more compact representations of states and ↑Conditional Probability Tables
than ↑Hidden Markov Models.

Emission

Emissions are observable sensor data. They are observed with a certain probability
depending on the actual state.
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Event

An event is a message that something happened at a specific point of time or
timespan. If it belongs to a tracked object, it can and should be attributed to it.
Several events attributed to the same object are allowed to happen at the same
time. Events do not need to happen at every time instant.

Event Processing Language

The Event Processing Language (EPL) is a rich declarative language for rule
specification which is part of Esper [CM12].

Forward-Backward Procedure

The forward-backward procedure finds the probability of a given observation
sequence in a ↑Hidden Markov Model [RJ86].

Hard Discretization

For ↑Regions, hard discretization applies a region test and does not consider previous
results. Moving around the border of a region yields many events of entering and
leaving the region. ↑Soft Discretization reduces the amount of messages.

Heatmap

In a heatmap, values are represented by colors. There are several types of heatmaps.
A heat matrix is a typical grid with colored cells. ↑Choropleth Maps are heatmaps
using regions of arbitrary shape instead of rectangular cells of a table. The prototype
optionally overlays heatmaps over satellite images to support domain experts in
relating values to ↑Terrain Features regardless of whether they were modeled as
↑Regions.

Hidden Markov Model

A Hidden Markov Model is a doubly stochastic process that models both actual
↑States and observable ↑Emissions [RJ86].

High Level Event

A high level event is a ↑Pattern over ↑Low Level Events or other high level events.

Hole

A hole is an interval of data accidentally missing due to hardware or software
malfunction [PSR+13]. Not to be confused with a ↑Semantic Gap.
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Home Range

A home range can be defined as “the normal area used by an animal in its life
activities” [ADMW09].

Kalman Filter

The Kalman filter uses a series over several (imprecise) state vectors to generate an
estimation of the actual state vector [Bol11]. The approach is similar to ↑Dynamic
Bayesian networks.

Local Convex Hull

Local convex hulls estimate ↑Home Ranges and utilization distributions. They
are able to identify hard boundaries and are able to display holes in the distribu-
tion [GFRC+07].

Low Level Event

Low level events are regular continuous ↑Streams interpreted as ↑Events.

Lunaphobia

Lunaphobia is the fear of the moon or rather moonlight. It does not have to be
fear of the moon itself, instead animals may be more aware if predators are more
likely to find them and therefore show signs of lunaphobia.

Mobile Sensor Node

Mobile sensor nodes are attached to bats. They emit signals in order to enable
↑Stationary Sensor Nodes to measure their position.

Movement Track

A movement track is a sequence of spatio-temporal positions, i.e. a sequence of
(instant, point) pairs, of a tracked object [PSR+13].

Operator

An operator is a atomic processing unit in a ↑Data Stream Management System. It
has incoming and outgoing ports. An operator processes incoming data continuously
and emits results to an outgoing port [Bol11].
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Pattern

A pattern is the definition of a ↑High Level Event which is comprised of several
other events. It states temporal relations, i.e. sequential, parallel and alternative
processes, as well as temporal conditions.

Projection

The projection ↑Operator applies a mapping function to incoming data tuples in
order to emit altered ones.

Raw Trajectory

“A raw trajectory is a trajectory extracted from a raw movement track and containing
only raw data for its Begin-End interval.” [PSR+13]

Region

A region is a user-defined area of interest. Rectangles, circles and polygons are
available for its definition. Moreover, a region can consist of two regions R1 and
R2 combined to R1 ∪ R2, R1 ∩ R2 or R1 \ R2.

Revision Transition

In activity detection, revision transitions replace the last chosen activity with a
revised one. Not to be confused with a regular ↑Transition.

Selection

The selection ↑Operator filters incoming data tuples in regard to whether they
fulfill a given predicate. Tuples not fulfilling the predicate are discarded.

Semantic Enrichment

Semantic enrichment is the process of adding knowledge to a trajectory [PSR+13].

Semantic Gap

A period of data missing on purpose is called semantic gap. Not to be confused
with a ↑Hole.

Semantic Trajectory

“A semantic trajectory is a trajectory that has been enhanced with ↑Annotations
and/or one or several complimentary segmentations.” [PSR+13]
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Snapshot-Reducibility

Snaphot-reducibility is the characteristic of a data stream processing ↑Operator,
that it resembles the behavior of its relational, non-temporal counterpart for each
↑Time Instant [Krä07a].

Soft Discretization

For ↑Regions, soft discretization applies a region test and considers previous results.
It adds a tube around the border in which it is unclear whether a point is inside
a region. Within the tube, the previous state remains unchanged. Hence, soft
discretizations returns less events than ↑Hard Discretization if a monitored animal
is moving around the border of a region.

Spatio-temporal Predicate

“A spatio-temporal predicate P (x, R) is a function that returns T , F or ⊥, depend-
ing on the topological relation of x to R over time.” [BBBB10] Spatio-temporal
predicates correspond to ↑Low Level Events.

State

The state contains present conditions of a system or a single object. In ↑Hidden
Markov Models, the state is resembled by one discrete random variable and can
only be implicitly observed by ↑Emissions.

Stationary Sensor Node

A network of ground-based stationary sensor nodes combines measurements of
emitted signals from ↑Mobile Sensor Nodes to position hypotheses. Stationary
sensor nodes are an interface to both mobile sensor nodes and the ↑Central Station.
Additional sensors can be attached in order to measure environmental data.

Stream

“A data stream is a real-time, continuous, ordered (implicitly by arrival time or
explicitly by timestamp) sequence of items.” [GÖ03]

Terrain Features

Terrain features are spatial characteristics of the environment, e.g special areas
like ponds or rivers as well as areas in which a certain type of tree grows. Terrain
features are modeled as ↑Region.
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Time Instant

A time instant is the smallest possible time interval.

Transition

In activity detection, low and high level events can act as transitions between two
activities.

Viterbi Algorithm

“The Viterbi algorithm is a recursive optimal solution to the problem of estimating
the state sequence of a discrete finite-state Markov process observed in memoryless
noise.” [FJ73]

Window

The window ↑Operator allows to combine tuples of several subsequent
↑Time Instants. The implementation in the prototype corresponds to time-
based sliding windows ωtime which “shifts a time interval of size w time units over
its input stream to define the output stream” [Krä07a].
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