
Integration of Dynamic AOP into the OSGi Service Platform

Florian Irmert
University of

Erlangen-Nuremberg
Department of Computer

Science
Computer Science 6
(Data Management)

Martensstrasse 3
91058 Erlangen, Germany

florian.irmert@cs.fau.de

Frank Lauterwald
University of

Erlangen-Nuremberg
Department of Computer

Science
Computer Science 6
(Data Management)

Martensstrasse 3
91058 Erlangen, Germany

frank.lauterwald@cs.fau.de

Matthias Bott
University of

Erlangen-Nuremberg
Department of Computer

Science
Computer Science 6
(Data Management)

Martensstrasse 3
91058 Erlangen, Germany
mail@matthiasbott.de

Thomas Fischer
University of

Erlangen-Nuremberg
Department of Computer

Science
Computer Science 6
(Data Management)

Martensstrasse 3
91058 Erlangen, Germany

thomas.fischer@cs.fau.de

Klaus Meyer-Wegener
University of

Erlangen-Nuremberg
Department of Computer

Science
Computer Science 6
(Data Management)

Martensstrasse 3
91058 Erlangen, Germany

kmw@cs.fau.de

ABSTRACT
The ability to adapt to different computing environments
or external changes is an important requirement for both
stationary and mobile computing. Without this ability, all
requirements have to be foreseen, which is often not possible
in practice. Classical software engineering approaches often
lead to redeployment or even software migration. Therefore
loosely coupled software design and a dynamic adaptation
model are required. Dynamic aspect-oriented programming
(d-AOP) in conjunction with service oriented programming
is well suited to face this demand. One well known approach
providing a service-oriented component model is the OSGi
Service Platform.

This paper introduces our approach to combine an OSGi
Framework with d-AOP to establish dynamic adaptation
of core concerns as well as crosscutting concerns. Seam-
less integration of current d-AOP frameworks is managed
by mapping aspect deployment and undeployment to OSGi
bundle lifecycle operations without affecting the deployment
model. Unlike former proposals, this approach retains the
strict separation of bundles as mandated by OSGi.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;

c©ACM, 2008. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in Proceed-
ings of the 2nd workshop on Middleware-application interaction, 2008,
http://doi.acm.org/10.1145/1394272.1394279
MAI ’08, June 3, 2008, Oslo, Norway

D.1.5 [Programming Techniques]: Aspect-Oriented Pro-
gramming; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms
[Design, Languages]

Keywords
[aspect-oriented programming, OSGi Framework, dynamic
adaptation, aspect weaving, modularization, crosscutting
concerns, aspect mechanism, software components, reuse]

1. INTRODUCTION
Middleware platforms like JEE or .NET have seen
widespread adoption in the industry to build robust and
flexible software applications. They provide services, e.g. for
security, logging, transaction etc., which are transparently
invoked during the execution of the business logic. This sep-
aration of concerns is a proven design principle for modern
software architectures. But these middleware platforms of-
ten have only a predefined set of services available. Eichberg
and Mezini [5] identify this lack of openness as a problem
and introduce the combination of middleware and aspect-
oriented programming (AOP) [9].

The architecture of middleware systems also struggles be-
tween generality and specialization [19]. Vendors offer sup-
port for many application domains resulting in a comprehen-
sive set of features. Therefore these systems often exhibit
large resource demands. The additional services can be seen
as orthogonal requirements with respect to the core func-
tionality of middleware systems. Orthogonal implementa-
tions have the drawback that it is not possible to decouple
them completely from the rest of the business logic code.

buettner
Schreibmaschinentext
© ACM, 2008. This is the author's version of the work.
It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in
MAI '08 Proceedings of the 2nd workshop on Middleware-application
interaction: affiliated with the DisCoTec federated conferences 2008
http://doi.acm.org/10.1145/1394272.1394279

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

In contrast to the business logic, which can be modularized
with patterns like “layers” [3], orthogonal implementations
are scattered throughout the code resulting in tangled code
that is excessively difficult to maintain [9].

A well-known technique to decouple these so-called cross
cutting concerns is AOP. We share the view of Zahn and Ja-
cobsen [19] that middleware architecture is one of the ideal
places to apply AOP methods to obtain a modularity level
that cannot be obtained with traditional programming tech-
niques. An analysis of modularity in aspect-oriented design
can be found in [12].

In particular domains like e.g. embedded devices, real time
applications etc. it is necessary for the developer to have an
optimized architecture. Services which are not used should
not be deployed, because otherwise they would occupy re-
sources. Dynamic AOP (d-AOP) extends the original notion
of AOP by allowing the integration of aspects at runtime [15,
2, 17]. Although some dynamic behaviour can be achieved
by static weaving, d-AOP is more powerful in the sense that
weaver targets can be declared at runtime [17]. D-AOP is
receiving growing interest for the creation of adaptive soft-
ware.

In the last years nearly every vendor enlarged its middle-
ware system to a SOA-platform (service-oriented architec-
ture). SOA is a recent effort to foster the reuse of software.
One platform for building SOA-applications that has be-
come prominent recently is the OSGi (Open Services Gate-
way Initiative) platform. Especially since being used as the
core of Eclipse 3, this platform has become popular. Origi-
nally designed for embedded devices and home service gate-
ways its footprint is very small compared to “traditional”
middleware platforms. The use on mobile devices etc. re-
quires the possibility to adapt the behaviour of an applica-
tion to different environments. Due to memory limitations
it is not always possible to deliver a fully featured device.
Therefore it is desirable to update the device at runtime trig-
gered by changing circumstances. With its small footprint
(about 800 kb) and the possibility to add software compo-
nents at runtime the OSGi framework is suitable for such
environments.

In [7] we introduced an approach for the integration of d-
AOP into the OSGi framework resulting in a SOA platform
where environment specific requirements can be modified
and/or updated at runtime. This paper enhances our pre-
vious work by providing a more flexible deployment model.
As OSGi allows running different applications at the same
time, we extended the definition of pointcuts, enabling us to
install application specific aspects. To show the viability of
this approach, we have integrated JBoss AOP [8] into the
Equinox OSGi framework [4] in a prototype implementation.

The remainder of this paper is organised as follows: In Sec-
tion 2 the OSGi framework as well as the basics of aspect-
oriented programming are introduced. Section 3 explains
the difficulties in integrating d-AOP and OSGi as well as
our solution to these problems. In Section 4 related work
is shown and briefly discussed. We conclude the paper in
Section 5.

2. TECHNICAL BACKGROUND
In this Section we give a short introduction to the OSGi Ser-
vice Platform and d-AOP before we summarize our previous
work on the integration of these two technologies.

2.1 OSGi Service Platform
The OSGI Service Platform is described as a “Java based
application server for networked devices, however small or
large they are” [13]. Originally designed for embedded de-
vices and home service gateways, it has become prominent
for building service-oriented applications. Several applica-
tions respectively services can coexist inside the OSGi Ser-
vice Platform. In OSGi the deployment unit is called bundle
and the bundles are seperated from each other by loading
them with different class loaders. Since Java 1.2 a type of
a class is defined by its name (e.g. fau.test.HelloWorld)
and additionally the class loader. Therefore it is possible
to deploy classes with the same name in different bundles
without interfering with each other. Also lifecycle manage-
ment is supported for all hosted applications; there is an API
to install, start, stop and de-install the application bundles
without restarting the framework. This “Hot-Deployment”
feature is very interesting in the context of SOA, because
adding new services to the platform does not affect running
services. Bundles can provide their functionality as a service
by publishing their interfaces in the OSGi Service Registry.
Other bundles employ this registry to discover and bind ser-
vices. While there are a number of implementations of the
OSGi Specification [10, 1], we decided to use Equinox [4],
published by the Eclipse Foundation, because it is a well
proven implementation which offers all necessary features
for our approach (Section 3).

INSTALLED

RESOLVED

UNINSTALLED

ACTIVE

STOPPING

STARTING

start

stop

install

uninstall

explicit

automatic

Figure 1: Bundle lifecycle

2.2 Dynamic AOP
The term “dynamic aspect-oriented programming” is most
commonly used if aspects can be deployed and activated at
runtime. Dynamic AOP can be realized e.g. with a modified
JVM [14] or bytecode modification [17]. We decided to use
JBoss AOP in our approach, because its successful appli-
cation is exemplified by its usage in the JBoss Application

Aspect Manager

Advice Binding

Pointcut
Definition

Advice
(Interceptor)

Advice Binding

public int foo(int);

0 invokestatic #44

3 invokevirtual #50

6 astore_2

7 iload_1

8 bipush 10

10 iadd

11 ireturn

Hook

Program flow

Pointcut?

Figure 2: Central Aspect Manager

Server. JBoss AOP inserts hooks at potential joinpoints at
loadtime. Each time such a hook is reached in the program
flow, a central Aspect Manager is invoked (fig. 2), which
manages the aspects (advice bindings) and decides whether
to apply them depending on the pointcut definition. The As-
pect Manager provides a method to add new advice bindings
(pointcut definition + advice) at runtime.

2.3 Previous Work
In [7] we introduced our approach to combine the OSGi
framework with dynamic aspect-oriented programming in
order to realize dynamic adaptation at runtime. The ba-
sic idea is to deploy aspects as OSGi bundles. Thus we
mapped the deployment/undeployment of an aspect to the
OSGi lifecycle operations install/start and stop/uninstall.
The OSGi core specification defines a bundle activator class
for each bundle which is executed when the bundle is started
and stopped. We utilized the start/stop method for de-
ploying/undeploying the aspects by invoking the appropri-
ate methods of the Aspect Manager. For this integration no
changes on the source of the OSGi respectively the d-AOP
implementation were necessary.

In this paper we show an enhancement to our approach by
extending the pointcut definition to achieve a bundle aware
definition of aspects. In [7] it is not possible to specify which
bundles should be affected by an aspect. An aspect is exe-
cuted at every joinpoint which is defined within a pointcut.
The definition of different aspects for classes with the same
name (deployed in different bundles) is not provided. To
support such a definition, an extension to the pointcut def-
inition is necessary.

3. BUNDLE-AWARE INTEGRATION OF D-
AOP INTO THE OSGI FRAMEWORK

In this section we present our integration of d-AOP into
the OSGi framework. At first we identify the requirements.
After a short discussion about an alternative solution, we
present our realization. The specific examples make use of
the JBoss AOP and the Equinox OSGi framework.

3.1 Requirements
Our requirements for the integration were:

1. Aspect deployment: Aspects should be deployed as
bundles. The OSGi deployment model must not be
altered.

2. No restriction for bundles: The“normal”OSGi bundles
should not have to be prepared. It should be possible
to install aspects also onto third-party bundles and
there should be no limitation to possible joinpoints.

3. Non invasiveness: We do not want to make changes to
the used OSGi or the d-AOP frameworks. Otherwise
the implementation of our integration code would need
to be changed every time a new version of the OSGi
framework or the d-AOP framework implementation
is shipped.

4. Bundle aware deployment: It should be possible to
specify a set of bundles where the aspect should be in-
stalled. This necessitates an enhancement of the point-
cut definition with respect to bundle names.

In our previous work [7] we have implemented the first three
requirements. The challenge in our new approach is to en-
hance the pointcut definition of a d-AOP framework to spec-
ify the affected bundles while remaining non-invasive.

Normally a pointcut matches joinpoints like a regular ex-
pression matches strings. Due to the fact that each bundle
is loaded with its own class loader in OSGi, it is possible that
classes with the same name and the same package structure
can coexist inside the OSGi framework (e.g. different ver-
sions of the same library). If a joinpoint in a bundle is se-
lected with a “normal” pointcut definition, the advice would
be woven into all versions of that bundle. Therefore it is nec-
essary to specify the bundle name additionally. A possible
definition for the bundle name is given in the code example
in listing 1, which uses a similar syntax to JBoss AOP.

String [] bundles =

new String []{" fau.test.firstbundle "};

ScopedBinding sbinding =

new ScopedBinding(bundles ,

(" execution(POJO ->new (..))" ,

TracingAdvice.class);

AspectDeployment deployer =

AspectDeployment.instance ();

deployer.deploy(sbinding);

Listing 1: Code Example

In this example the names of the bundles that are to be
affected by an advice are put into a String array. The aspect
is defined by a so called ScopedBinding with the parameters:
bundles, pointcut, and advice. Then the ScopedBinding is
registered with the AspectManager (in this example called
AspectDeployment).

3.2 Obvious Solution
The obvious solution is an extension of the Aspect Manager.
As shown in figure 3 the hook asks the Aspect Manager if it is
adviced and the decision depends on the extended pointcut
definition, which consists of the “normal” pointcut and the
bundle name. It would be necessary

• that the hook delivers the name of the bundle to the
Aspect Manger and

Scoping Policy

Integration

JBoss
AOP

Equinox

Bundle Bundle

Class LoaderClass Loader

DomainDomain

Advice Binding

Pointcut
Definition

Advice
(Interceptor)

Advice Binding

Pointcut
Definition

Advice
(Interceptor)

Advice Binding

Pointcut
Definition

Advice
(Interceptor)

Bundle

Domain

Class
Loader

Figure 4: Integration architecture

Aspect Manager

Advice Binding

Extended pointcut
Definition

Advice
(Interceptor)

Advice Binding

public int foo(int);

0 invokestatic #44

3 invokevirtual #50

6 astore_2

7 iload_1

8 bipush 10

10 iadd

11 ireturn

Hook

Program flow

Pointcut?
Bundle name?

Figure 3: Extended pointcut definition

• that the advice binding can handle the extended point-
cut definition.

Therefore it would be inevitable to change the source code
in JBoss AOP. But one of our design goals was not to change
the source code of the OSGi or the d-AOP framework. To
achieve this goal it is necessary to develop the enhancement
on top of these frameworks.

3.3 Realization
JBoss AOP was originally designed for use inside the JBoss
Application Server. To run different applications inside the
application server while preventing them from interfering
with each other, JBoss also separates the applications by
loading them with different class loaders. To install different
aspects for these applications, it is possible to manage mul-
tiple Aspect Managers (called Domains) inside JBoss AOP,
whereby a Domain is simply a specialization of the Aspect
Manager and each Domain instance is responsible for a set
of class loaders.

In our prototype we have implemented a layer on top of
JBoss AOP to manage a Domain for each bundle. The as-
pects are assigned to the different domains depending on the

bundle definition in the ScopedBinding (listing 1). Figure
4 shows the architecture of our integration concept. The
correlation between Domain and class loader is defined in
a “scoping policy” (AOPClassLoaderScopingPolicy), which
can be set at the central Aspect Manager (fig. 5).

 Class Diagram1

+AspectManager instance(ClassLoader loadingClassLoader)
AspectManager

AdviceBinding

+Domain getDomain(ClassLoader classLoader, AspectManager parent)
AOPClassLoaderScopingPolicy

Domain
*

1

1
1

Visual Paradigm for UML Standard Edition(University Erlangen-N??rnberg)

Figure 5: JBoss AOP AspectManager

Each JBoss AOP hook is bound to a specific domain, de-
pending on the scoping policy. When a hook is reached the
first time it invokes the factory method instance() in the
Aspect Manager and passes its own class loader. The fac-
tory method returns the appropriate Domain. Because the
hook passes only its own class loader as argument to the
instance() method, the scoping policy has to decide which
Domain should handle the advice bindings for that specific
hook on the basis of the class loader. The “default” domain
is the central Aspect Manager itself.

To be able to specify the bundle name in the ScopedBinding

it is necessary to establish a binding between bundle names,
class loaders and domains in our integration layer. This is
done by mapping bundle names to Domains and mapping
bundle names to class loaders.

To establish the mapping between bundle name and Do-
main the event system of OSGi is used. During an
BundleChanged event that is thrown by the OSGi frame-
work everytime before it starts a bundle the following tasks
are executed:

1. Register Domain: The bundle name and the cor-
responding Domain are registered in the integration
layer.

2. Aspect deployment: All previously installed aspects
for that bundle are registered at the Domain.

There are two reasons for installing all aspects at the cor-
responding Domain when the bundle is started: If a bundle
is updated (uninstalled and then reinstalled with a new ver-
sion) the class loader for this bundle changes and a new Do-
main is created for this class loader. All aspects that affect
the bundle have to be installed at this new Domain. The
second reason is the deployment of aspects for uninstalled
bundles. It is possible to install aspects for bundles which
are not available at aspect installation time, just by speci-
fying a bundle name that does not exist. If a bundle with
a corresponding name is installed later, the aspects have to
be added to the newly created Domain.

The mapping between the class loader and the Domain is
established while a bundle is loaded. In Equinox it is pos-
sible to intercept the class loading with a so-called Class-
LoadingHook. We provide such a ClassLoadingHook, which
performs two tasks.

1. Bytecode instrumentation: It invokes the bytecode in-
strumentation for the JBoss AOP hooks. Within this
extension the hooks are inserted into the bundles at
loadtime. Bundles do not have to be aware that they
will be aspectized in any way.

2. Register class loader: The class loader of the bundle is
registered in our integration layer with the correspond-
ing bundle name.

Utilizing the OSGi event system and a ClassLoadingHook
the mapping between bundle name, class loader and Do-
main is established respectively updated every time a new
bundle is installed in the OSGi framework without the need
to change the source code of JBoss AOP or the Equinox
OSGi implementation.

4. RELATED WORK
This section presents other approaches which combine the
benefits of OSGi and aspect-oriented programming.

4.1 AJEER
Martin Lippert presented his“AspectJ Enabled Eclipse Run-
time” (AJEER) [11] a few years ago. AJEER was originally
designed to integrate AspectJ [16] into the Eclipse frame-
work. When AJEER was implemented, Eclipse did not yet
make use of the OSGi framework. The weaving part of
the AspectJ 1.2 compiler implementation was added to the
Eclipse runtime. Although Lippert discusses the options

of AJEER being extended to support runtime weaving, it
is currently limited to load-time weaving. Additionally he
presents the idea of “runtime-like” weaving: Aspects can be
added to bundles at runtime and are activated when the bun-
dle is restarted. Currently this option is not implemented
either. Since Eclipse 3 is based upon the OSGi framework,
AJEER has been reengineered to support the integration
of AspectJ into the new Eclipse kernel. Therefore AJEER
can be used to write aspects in AspectJ as deployable OSGi
bundles. The use of load-time weaving however hinders the
integration of aspects into already running bundles.

4.2 Jadabs
In [6] Frei and Alonso present an approach to integrate a d-
AOP framework, which uses dynamic proxies to implement
the aspects, into the OSGI Service Platform. These proxies
replicate the bundle interfaces. Therefore it is not possi-
ble to add aspects inside the bundles. They modified the
OSGi API and the class loading of the used d-AOP frame-
work (to solve the class loader problem). In contrast to their
approach, we do not change the API and we are able to de-
ploy the aspects as bundles, which we consider of utmost
importance for a seamless integration. We also facilitate the
installation of aspects inside a bundle, even if it is a third-
party bundle.

There are also approaches for integrating AOP into other
middleware systems [18, 5]. Nevertheless all of them have
in common that they (i) do not support dynamic AOP and
that they (ii) rely on own implementations. In contrast, our
approach uses a well proven middleware framework which
can be combined with popular d-AOP implementations.

5. CONCLUSION
This paper presented our proposal for an integration layer
that combines dynamic aspect-oriented programming and
OSGi while retaining the OSGi deployment model. We ex-
tended the pointcut definition to restrict the scope of aspects
to a subset of bundles by specifying the affected bundles by
their names. Our proof-of-concept implementation is based
on the Equinox OSGi implementation and the JBoss AOP
framework. The integration is accomplished through an ad-
ditional layer that maps between bundle names, class loaders
and AOP domains. This layer is purely implemented as an
extension to JBoss AOP and Equinox, i.e. without chang-
ing code or even APIs of the existing frameworks. Aspects
and “normal” bundles may be deployed and undeployed in
any order. Currently we evalute the performance and the
handling of our approach in a real world case study.

6. REFERENCES
[1] Apache.org. Apache Felix homepage.

http://cwiki.apache.org/FELIX/index.html, March
2007.

[2] J. Bonér. AspectWerkz - Dynamic AOP for Java.
http://codehaus.org/~jboner/papers/

aosd2004aspectwerkz.pdf, October 2003.

[3] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns. John
Wiley & Sons, August 1996.

http://cwiki.apache.org/FELIX/index.html
http://codehaus.org/~jboner/papers/aosd2004aspectwerkz.pdf
http://codehaus.org/~jboner/papers/aosd2004aspectwerkz.pdf

[4] Eclipse Foundation. Equinox OSGi Framework
Homepage. http://www.eclipse.org/equinox, March
2007.

[5] M. Eichberg and M. Mezini. Alice: Modularization of
middleware using aspect-oriented programming. In
T. Gschwind and C. Mascolo, editors, Software
Engineering and Middleware: 4th International
Workshop, SEM 2004, volume 3437, pages 47–63,
Linz, Austria, March 2005. Springer-Verlag.

[6] A. Frei and G. Alonso. A Dynamic Lightweight
Platform for Ad-Hoc Infrastructures. In PERCOM
’05: Proceedings of the Third IEEE International
Conference on Pervasive Computing and
Communications, pages 373–382, Washington, DC,
USA, 2005. IEEE Computer Society.

[7] F. Irmert, M. Meyerhöfer, and M. Weiten. Towards
Runtime Adaptation in a SOA Environment. In
W. Cazzola, S. Chiba, Y. Coady, S. Ducasse,
G. Kniesel, M. Oriol, and G. Saake, editors,
Proceedings of ECOOP’2007 Workshop on Reflection,
AOP and Meta-Data for Software Evolution
(RAM-SE’07), pages 17–26, Berlin, Germany, July
2007.

[8] JBoss. JBoss AOP homepage.
http://labs.jboss.com/portal/jbossaop/, February
2007.

[9] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, Proceedings European
Conference on Object-Oriented Programming, volume
1241, pages 220–242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

[10] Knopflerfish. Knopflerfish OSGi homepage.
http://www.knopflerfish.org/, March 2007.

[11] M. Lippert. AJEER: An AspectJ-Enabled Eclipse
Runtime. In OOPSLA ’04: Companion to the 19th
annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications,
pages 23–24, New York, NY, USA, 2004. ACM Press.

[12] C. V. Lopes and S. K. Bajracharya. An analysis of
modularity in aspect oriented design. In AOSD ’05:
Proceedings of the 4th international conference on
Aspect-oriented software development, pages 15–26,
New York, NY, USA, 2005. ACM Press.

[13] OSGiAlliance. About the OSGi service platform:
Technical whitepaper.
http://www.osgi.org/documents/collateral/

TechnicalWhitePaper2005osgi-sp-overview.pdf,
November 2005.

[14] A. Popovici, G. Alonso, and T. Gross. Just-In-Time
Aspects: Efficient Dynamic Weaving for Java. In
AOSD ’03: Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development,
pages 100–109, New York, NY, USA, 2003. ACM
Press.

[15] A. Popovici, T. Gross, and G. Alonso. Dynamic
weaving for aspect-oriented programming. In AOSD
’02: Proceedings of the 1st International Conference
on Aspect-Oriented Software Development, pages
141–147, New York, NY, USA, 2002. ACM Press.

[16] The AspectJ Team. The AspectJ Development

Environment Guide. http://www.eclipse.org/
aspectj/doc/released/devguide/, March 2007.

[17] A. Vasseur. Dynamic AOP and Runtime Weaving for
Java - How does AspectWerkz Address It?
http://aspectwerkz.codehaus.org/downloads/

papers/aosd2004-daw-aspectwerkz.pdf, AOSD 2004
International Conference on Aspect-Oriented Software
Development, Invited Industry Talk, March 2004.

[18] G. Vaysse, F. André, and J. Buisson. Using aspects for
integrating a middleware for dynamic adaptation. In
AOMD ’05: Proceedings of the 1st Workshop on
Aspect-Oriented Middleware Development, New York,
NY, USA, 2005. ACM Press.

[19] C. Zhang and H.-A. Jacobsen. Refactoring Middleware
with Aspects. IEEE Transactions on Parallel and
Distributed Systems, 14(11):1058–1073, 2003.

http://www.eclipse.org/equinox
http://labs.jboss.com/portal/jbossaop/
http://www.knopflerfish.org/
http://www.osgi.org/documents/collateral/TechnicalWhitePaper2005osgi-sp-overview.pdf
http://www.osgi.org/documents/collateral/TechnicalWhitePaper2005osgi-sp-overview.pdf
http://www.eclipse.org/aspectj/doc/released/devguide/
http://www.eclipse.org/aspectj/doc/released/devguide/
http://aspectwerkz.codehaus.org/downloads/papers/aosd2004-daw-aspectwerkz.pdf
http://aspectwerkz.codehaus.org/downloads/papers/aosd2004-daw-aspectwerkz.pdf

	Introduction
	Technical Background
	OSGi Service Platform
	Dynamic AOP
	Previous Work

	Bundle-aware Integration of d-AOP into the OSGi Framework
	Requirements
	Obvious Solution
	Realization

	Related Work
	AJEER
	Jadabs

	Conclusion
	References

