
Runtime Adaptation
in a Service-Oriented Component Model

Florian Irmert
University of

Erlangen-Nuremberg
Department of Computer

Science
Computer Science 6
(Data Management)

Martensstrasse 3
91058 Erlangen, Germany

florian.irmert@cs.fau.de

Thomas Fischer
University of

Erlangen-Nuremberg
Department of Computer

Science
Computer Science 6
(Data Management)

Martensstrasse 3
91058 Erlangen, Germany
k.p.t.fischer@gmx.de

Klaus Meyer-Wegener
University of

Erlangen-Nuremberg
Department of Computer

Science
Computer Science 6
(Data Management)

Martensstrasse 3
91058 Erlangen, Germany

kmw@cs.fau.de

ABSTRACT
Developing software applications which manage, optimize or
adapt themselves at runtime requires an architecture which
provides adaptation of software components at runtime. An
architecture model that has gained a lot of attention in re-
cent years is SOA (service-oriented architecture). In a SOA
environment services as well as applications build up com-
plex dependencies. Therefore it is crucial for self-managing
SOA applications to adapt services at runtime without in-
terference of the application execution and the service avail-
ability. In this paper, we discuss the problems arising from
the requirement of runtime adaptation and present our solu-
tion by replacing service implementations at execution time
in a service-oriented component model. For a seamless in-
tegration we strive for a transparent and atomic replace-
ment of a service implementation in respect to the other
services/applications.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.3.3 [Programming Languages]: Language Constructs
and Features—Frameworks; D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement; D.2.9
[Software Engineering]: Management—Life cycle; D.2.13
[Software Engineering]: Reusable Software

General Terms
Design

Keywords
Adaptation, service-oriented architecture, component re-
placement, modularity, migration

c©ACM, 2008. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-managing systems,
2008, http://doi.acm.org/10.1145/1370018.1370036
SEAMS’08, May 12–13, 2008, Leipzig, Germany.

1. INTRODUCTION
In recent years a new architectural style, the so-called
”service-oriented architecture” (SOA) [19, 10, 25] has be-
come very popular. In SOA communication is performed by
services and applications are composed of existing services.
Thereby services are loosely coupled and describe their func-
tionality within a service description. They are published in
a service registry and applications search the registry for ad-
equate services. A characteristic in such a loosely coupled
environment is the dynamic arrival and departure of services
at any time. A departing service can affect the availability of
the applications which depend on that service. A growing
number of companies are implementing their software ap-
plications upon service oriented architecture, e.g. to lower
their integration costs and to improve the time to market.
But like traditional middleware [22], a SOA application is
limited in its ability to support adaptation. Two types of
adaptation can be identified: static and dynamic. To de-
velop software applications which manage, optimize or adapt
themselves at runtime, dynamic adaptation (runtime adap-
tation) is needed as a foundation.

In this paper we introduce the CoBRA (Component Based
Runtime Adaptable) architecture which enables dynamic
adaptation by using a service-oriented component model
[6]. Within the CoBRA architecture an application may
be adapted without the need to restart or shutdown the ap-
plication. Therefore the adaptation includes an exchange of
the implementation, which is atomic for the underlying ap-
plication, as well as a mechanism for state preservation of
the adapted service.

The rest of the paper is organized as follows. In section 2 we
introduce SOA. The requirements and challenges of service
adaptation are discussed in section 3. The CoBRA project,
which is addressing the service adaptation challenges, is pre-
sented in section 4. Section 5 presents related work, followed
by future work and a conclusion in section 6.

2. SOA
In a service-oriented architecture (SOA) new applications
are assembled from existing services. Services are reusable
units, which can be used by applications or other services

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Textfeld

buettner
Schreibmaschinentext
© ACM, 2008. This is the author's version of the work.
It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in
SEAMS '08 Proceedings of the 2008 international workshop on
Software engineering for adaptive and self-managing systems
http://doi.acm.org/10.1145/1370018.1370036

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

Service Registry

Service Provider Service Requester3. bind

1. publish 2. discover

Figure 1: Service registry

without the need to know the details of their implementa-
tion.

Following [17], the definition of a service is published in the
service description. The service description consists at least
of the service interface, but additional information regard-
ing functional and non-functional properties is desirable.
The service description is used to select an appropriate ser-
vice provider. Service providers offer implementations for
a service and publish their service description in a service
registry. A service requester can search the registry and
choose an adequate service provider for a specific service
description. Figure 1 shows the interrelationship of service
provider, service requester and service registry.

In a SOA environment services can be added or removed at
any time. The application must be aware of that behaviour
and perhaps rebind a new service provider at runtime. Often
releasing a service and binding a new one is supported by
the environment. For example an event system can inform
all depending applications and services if a service departs
or arrives. This implies the service requester to handle the
following events:

• Arrival of a new service. The arrival of a new service
may cause an application (service requester) to bind
the new service if the service description fits (better)
to the requirements of the application.

• Departure of an existing service. The application can
try to switch to another service. If non appropriate
service is available in the registry, the application may
not be able to work properly.

The fact that a service can arrive or depart at any time
obviously implies a lot of custom coding, e.g. the error han-
dling in the case no adequate alternative is available for a
departing service.

2.1 Service availability
Founded on the dynamic behaviour of services, their avail-
ability is a matter of concern. In a SOA scenario multiple
services depend on each other and the availability of one
service often affects different applications. Therefore a defi-
nition of service availability for a SOA service may be given:
A service is available as long as its service description stays
valid and trackable by the service registry. A service descrip-
tion is valid as long as it is usable by the service requester.

The service availability may be harmed by service depen-
dency issues as well as by update events for the service itself.

Service dependency in this context poses a problem. If a ser-
vice is changed, all depending services may not work prop-
erly. The core challenge is therefore to update or change a
service at runtime without affecting other services. To solve
this problem, we discuss the two major service adaptation
concepts in section 3: One employs dynamic AOP to add
or modify the behaviour of services at runtime. The other
approach replaces service implementations at runtime.

Defining the addressed problem, we first have to outline ser-
vice updates and their pitfalls at runtime.

2.2 Service update
To ”update” a service in a SOA environment usually a new
version of the same service provider (with the same service
description) is published in the registry and afterwards the
old version is removed. Therefore switching to another im-
plementation is only possible if the application releases the
service reference after its invocation. During the next re-
quest to the service registry the new version of the service
can be bound.

Application A Service C Service C' Application B

C in registry

C’ in registry

Figure 2: Example: classical service replacement

In the example in figure 2 service C is subject to replace-
ment by service C’. Therefore service C is replaced in the
registry with service C’. Obviously, application A still has a
reference to the service object of service C, although service
C is not available in the registry any more. For a certain
time application A and B do not work with the same imple-
mentation of service C and hence during this time interval
applications A and B may deliver different results.

In the previous example we assumed that C is still avail-
able, although it is not registered any more. This behaviour
is caused for instance by asynchronous garbage collection.
To avoid such a situation service C can be eliminated at the
same time its service description is removed from the reg-
istry. If it is eliminated synchronously during the method
invocation of application A, an error will occur, which has
to be handled by application A.

Another approach is the usage of an event system: In this
case application A and B are notified by an event on ar-
rival of service C’, which causes the change from service C

to C’. However, this behaviour does not eliminate the need
for error-handling if the event occurs during a method invo-
cation on service C. Furthermore, an event system can not
avoid the situation depicted in figure 2 completely. Appli-
cation B can already be notified of the service update and
therefore already use service C’, while application A, which
has not yet received the update event, still works on service
C.

In conclusion, regardless which approach is used for a service
update, the possibility for ambiguity of a service in a certain
time period remains.

3. SERVICE ADAPTATION
As explained in the last section it is challenging to add new
functionality or change the functionality of a service in a
SOA environment at runtime without any side effects. The
emphasis in this paper lies on the exclusion of side effects like
the illustrated update problem in section 2.2. For continuous
execution during and after an adaptation process it is crucial
to consider state transition and synchronisation issues as
core challenges.

There exist several approaches to enable adaptation, mostly
based on component models. They all may be categorized
in three mayor approaches:

• One possibility is the use of dynamic AOP (d-AOP) or
delegation models to apply modifications at runtime.
Representatives of this technique are [12, 14, 21]

• Another approach is to use fractal components like
[5], where components are compositions of subcompo-
nents, which are target of adaptation by replacement.

• The third category adapts a component by replace-
ment of its implementation, while the interface stays
valid. [4, 16, 15, 3] proposed concepts realizing this
approach.

The latter two approaches exhibit a large similarity in re-
spect to the adaptation process. While the fractal model
adapts a component by replacing small subcomponents be-
hind a common interface, the last approach replaces the
whole component behind the interface. Therefore the aris-
ing prerequisites, which have to be met to enable runtime
adaptation, are the same, but in another granularity.

To enable runtime adaptation in a SOA environment, we
have tested two different concepts: We have integrated a d-
AOP framework in SOA environment to check the handling
with respect to performance and maintenance. The results
are presented in the next section. Afterwards we introduce
our current solution for the adaptation by replacement of
whole service implementations at runtime.

3.1 Dynamic adaptation with d-AOP
Previtali [21] exploits aspects for dynamic updates and em-
ploys AOP’s (aspect-oriented programming) features like
method or field interception. With dynamic AOP (d-AOP)
these modifications can be applied at runtime. The term
”dynamic aspect-oriented programming” is most commonly

public int foo(int);
0 // HOOK: invoke

 Aspect Manager //
 1 astore_2
 2 iload_1
 3 bipush 10
 4 iadd
 5 ...

Pointcut?

Program flow Aspect Manger

Advice binding

Pointcut
definition

Advice

Figure 3: dynamic AOP

used if aspects can be deployed and activated at runtime.
Dynamic AOP can be realized e.g. with a modified JVM
[20] or bytecode modification [26]. The integration of d-
AOP into a SOA framework (as we have demonstrated in
[12]) constitutes a technical basis for adaptation of running
services to new system conditions as well as changing busi-
ness requirements.

The downside of using d-AOP for service adaptation at run-
time is mostly caused by the actual available implementa-
tions of d-AOP frameworks. Chitchyan and Sommerville [7]
give a review of the most popular implementations. Nearly
all of them insert so-called hooks into the bytecode for every
joinpoint. A hook invokes a central Aspect Manager which
manages the pointcut definitions and advices. The Aspect
Manger decides if the hook is a pointcut and executes the
advice if required (figure 3).

The advantage of this approach is that the developer of a
service implementation doesn’t have to prepare it for adap-
tation. The hooks are inserted at load time and the aspects
can be added and activated at runtime. But during our
experiments, we noticed also some disadvantages:

1. Performance overhead : calling a central Aspect
Manger each time a hook is reached in the program
flow results in a great performance overhead. Hooks
are inserted for all joinpoints (constructor, field and
method interception). As we have tested in our exper-
iments, adding this additional layer of abstraction con-
stitutes a significant overhead. It is possible to specify
where the hooks should be inserted and the overhead
decreases if fewer hooks are defined, but this limits
the definition of pointcuts at runtime. A joinpoint can
only be advised, if a hook was inserted before.

2. Maintenance: AOP [13] should help to avoid scattered
and tangled code. Crosscutting concerns should be en-
capsulated. So ”adding” or ”changing” code with the
help of d-AOP to update an application or service
is strictly speaking often a misuse of aspect-oriented
programming. To maintain an application which was
”hot-updated” with d-AOP is a challenge for the de-
velopers. Code which originally belongs to the core
concern is realized as an aspect. Further evolution of
such an application has to consider behaviour which
has been woven into the implementation at runtime.
A developer has to be aware of all pointcut definitions,

which is hardly manageable.

3. Limited functionality: current implementations of d-
AOP frameworks are still limited in their functionality
in contrast to AOP frameworks which use compile time
or load time weaving.

4. Testing: Using aspects to add or modify the behaviour
of an application makes testing difficult. The imple-
mentation may be distributed, parts are still in the
original implementation and other parts are imple-
mented in aspects. This conflicts with good object-
oriented design, where objects should encapsulate a
specific behaviour to ease maintenance and further de-
velopment.

Because of these disadvantages, we propose an approach
that does not ”add” new functionality or updates to the ex-
isting services, but exchanges the service implementation at
runtime.

3.2 Dynamic adaptation: replacing service
implementations at runtime

A service consists of a service description and a correspond-
ing service implementation, as introduced in section 2. Our
solution of updating a service at runtime is to switch the
service implementation (which is encapsulated in a compo-
nent), while the service interface as part of the service de-
scription stays valid. This implies that the new version of
the implementation has to fulfil the same service interface.
To enable this behaviour at runtime, the following require-
ments as introduced by [2] have to be accomplished:

• Transparency: The replacement of a service implemen-
tation has to be transparent for the depending services
and applications. No extra code should be included
into the implementation of a service to handle the re-
placement of its dependencies. But it is justifiable that
a component implements special methods to consider
the replacement of itself.

• Atomicity: Changing a service implementation must
be uninterrupted and therefore an atomic operation.
Other services or application are not allowed to see
any intermediate states. Accessing an intermediate
state may also result in unpredictable side effects. As
described in section 2.2 solely changing the entry in
the service registry can result in race conditions. De-
pending services may hold references to different im-
plementations at the same point in time, which may
cause indeterministic behaviour.

• State preservation: Attributes of the service may have
a specific value at the moment of change. This state of
the service has to be transferred to the new implemen-
tation. Therefore the state of the old version of the
underlying component has to be saved and injected
into the new version.

• Lifecycle management: The whole adaptation process
has to be coordinated by the environment. A Lifecycle
management has to control the process: Saving the
state of the old version, replacing the old version by

the new one and restoring the state. The Lifecycle
management must also ensure the atomic execution of
the whole process.

Based on these requirements a dynamic adaptation concept
is designed, following the approach of a service-oriented com-
ponent model, propagated by [6]. This model incorporates
the SOA approach and a component model as defined in [24,
23]. In such a model, a service implementation is realized
in a component, whose lifecycle management is part of the
framework. The other requirements are met by enhancing
this lifecycle management with synchronisation and state
transition mechanisms as illustrated in the next section.

4. COBRA FRAMEWORK
The CoBRA Framework provides a Java-based execution
environment, implementing a service-oriented component
model [6] with additional capability for adaptable services as
discussed in section 3. In terms of [22] the CoBRA Frame-
work can be seen as a dependable mutable middleware. That
means an adaptation to changing needs at runtime is possi-
ble and an interference between the adaptation process and
the running application is prevented.

The dynamic adaptation of services is entirely managed by
the CoBRA Framework. Services are therefore guaranteed
even over version transitions. This implies some extensions
regarding the events for service manipulation, resulting from
the service guarantee:

• Arrival of a new service. A new adaptable service is
propagated into the framework. With the registration
in the service registry, the service is available for all
components, without any further functionality com-
pared to the classical service event.

• Departure of an existing service. An existing service
may only depart if it not used by any service requester.
In terms of the components, a component may only be
uninstalled if no exported adaptable services are bound
to any service requester.

• Adaptation of an existing service. This event is intro-
duced for the adaptation of an existing service from
one version to another without influencing the avail-
ability of the service. A service requester therefore
is not affected by the adaptation process. In a classic
SOA Framework, this event is represented by the com-
bination of a departure and an arrival event. The issue
of ambiguity introduced in section 2.2 and the resulting
requirement for atomicity of the adaptation process re-
quire additional consistency mechanisms, represented
by the adaptation event. The cause is the different
semantic of this event in the adaptation context in
contrast to a classic remove and add behaviour of a
service replacement.

4.1 Adaptable services
The CoBRA Framework architecture is designed to ensure
the described behaviour for these events in a fully transpar-
ent matter. Before we explain the architecture, a definition

Component

Service

 Service registry

Service

Component

Service Service

Service descriptionsService descriptionsService descriptions

state

Figure 4: CoBRA services

of adaptable services in the context of the CoBRA Frame-
work has to be given.

An adaptable service in the CoBRA Framework is always re-
alized within a component, as shown in figure 4. Therefore
components are the entity of consideration when illustrat-
ing the architecture. At first, two underlying component
types must be distinguished: stateful components and state-
less components.

Stateless components lack the need for a state transition in
case of adaptation. They have no component wide state.
Therefore no state preserving actions must be taken by the
framework. Stateful components however have a component-
wide state which is required to be transferred in an adap-
tation process. Which data is considered as the component
wide state depends on the transition strategy. The CoBRA
project follows a weak migration strategy [11] considering
global attributes. For the state transition in an adaptation
process, a state transition protocol is defined. At first this
protocol requires unique identifiers to be introduced for each
member of the component wide state. These identifiers en-
sure the identifiability of single state members throughout
the adaptation process. Secondly, taking advantage of the
identifiers, two procedures, for store and restore are defined.
This will be discussed in more detail in section 4.2.2.

Another requirement for adaptable services is the service
contract. Each service provider and service requester has to
agree on a fixed service description, defining the protocol of
their communication. In the CoBRA environment a service
contract is represented by an interface exported by the un-
derlying component of a service provider. These interfaces
are registered in the service repository on framework level,
as shown in figure 5.

Adaptable services respectively components exist in their
component space managed by the CoBRA framework. The
architecture of this Framework layer is subject of the next
section, starting with the levels of management in the con-
text of service adaptation.

4.2 Architecture
The CoBRA Framework architecture, as shown in figure 5,
consists of three hierarchical managing levels. Following a
top-down approach, the first level is the framework level.
On this level a global adaptation manager coordinates com-
ponents and their exported services. With focus on high
availability, at this level all components supporting service
adaptation are registered with the adaptation manager and

any adaptation requests are triggered and controlled via this
management service.

The second level is the component management. On this
level the state management is located, i.e. considering the
case of a service adaptation, the transfer of the current state
from the adapted service or respectively the underlying com-
ponent to the adapting component is managed.

On the third management level services themselves are re-
sponsible for management tasks. Each service is therefore
wrapped by a protection proxy [9] representing the consis-
tency management. The responsibility of the consistency
management is to ensure the atomicity of the evolution pro-
cess for the affected system.

These three levels of management are interwoven and coordi-
nated by an event manager on framework level. As a result
in case of an adaptation request the framework level man-
agement notifies the affected component and service level
management instances, which take the required actions, il-
lustrated below.

4.2.1 Adaptation manager
At framework level a global service registry is available.
The role of the service registry is to provide the base for a
framework-wide nameservice, to discover and bind to regis-
tered services. Moreover an additional component registry in
combination with the service repository is introduced, where
all components, exporting adaptable services, are implic-
itly registered at load time. For stateful components also
a state container is maintained in the registry, to enable
the proposed state transition. The service repository de-
picts a component containing all declarations of adaptable
services, in terms of [16] acting as a repository for service
contracts. The difference between the service registry and
the service repository is founded on the state of the reg-
istered services. While the service repository contains all
known service descriptions, even services currently not as-
sociated with a service object, the service registry registers
only current available service descriptions with their corre-
sponding service objects. Therefore the service definitions in
the service registry represent a subset of the ones the service
repository contains.

All adaptation requests are triggered and managed via the
adaptation manager, by use of the state and consistency
management. In case of an adaptation request, the adap-
tation manager coordinates the whole adaptation process.
First it identifies the affected components. Then the affected
state and consistency management entities are triggered via
the synchronous event system. The timely fashion of this
process is discussed in detail in section 4.3.

4.2.2 State management
State management takes place at component level, by the
definition of the state transition protocol introduced in sec-
tion 4.1. This protocol implements the memento pattern [9]
and is maintained at framework level and so unaffected by
the adaptation process. All attributes of the component-
wide state are saved into the container with unique identi-
fiers to enable identification in the restore process.

framework level management

component level management

service level management

CoBRA component spaceAdaptation manager

component

Proxy

state

Proxy

service

proxy

component
registry

service registry

service repository

se
rv

ic
e

event manager

Figure 5: CoBRA architecture

During instantiation of the adapted component, the pre-
viously saved state container is injected into the compo-
nent. After injection, the restore function of the state tran-
sition protocol is called by the framework and restores the
state of the component. Variations in the semantic mean-
ing of attributes must be considered and corrected at im-
plementation time of the restore function, when accessing
and processing the single fields of the container for restora-
tion. Therefore the transition protocol is implemented in
two stages: At the first deployment of an adaptable ser-
vice the store function must be defined. Afterwards each
adapting component must incorporate a restore method cor-
responding to the constraints of the store method of the
adapted component. Moreover a store method must be de-
fined for further adaptation processes to complete the tran-
sition protocol.

4.2.3 Consistency management

service provider service requester

se
rv

ic
e

proxy

service
repository

service contract

Figure 6: CoBRA service interaction

Every service in the CoBRA environment is replicated at
runtime by a proxy following the protection proxy pattern
defined in [9]. As an illustration of this, figure 6 shows,
that every service requester in the CoBRA environment does
not access the service providing object directly, but through
a proxy, representing a guardian object, as introduced in
[4]. The difference between these guardian objects and the
CoBRA proxy system is the transparent behaviour for the
service requester, due to the identical signature and type of
the proxy compared to the corresponding service interface.

The need for this indirection by a protection proxy is
founded on the requirement for an atomic adaptation point.
The used weak migration strategy for state transition re-
quires a consistent point of the local state in the component
to adapt. As a result no manipulation on this state is al-
lowed, once the adaptation process is initiated. In the Co-

BRA environment the possibility of a state change during
adaptation and the resulting inconsistencies is eliminated by
a blocking behaviour provided by the proxy concept. That
means a service execution is stalled by a locking mechanism
in the proxy before the method call is delegated to the un-
derlying component as long as the adaptation process lasts.
If the reference to the underlying component in the proxy is
updated to the adapted component and the state transition
of the component is completed, the stalled execution is re-
sumed. As pointed out, this concept of a service level consis-
tency management ensures the atomicity and transparency
of the adaptation process in the viewpoint of a service re-
quester.

4.3 Service adaptation process
Another important aspect in a dynamic environment is the
adaptation process in a timely matter. In this section the
interaction between the management levels throughout the
adaptation process is described.

B1a

Store phase Switch phase

State container

B1

Restore phase

Adaptation process

Active reference

Invalid reference

B2

Adaptation manager

Service proxy

store

restore

Blocked invocation

Successful invocation

time

Figure 7: Service adaptation process

Figure 7 shows the adaptation process, which is divided in
three phases: The store phase, the switch phase and the
restore phase.

The store phase is initiated when a request for adaptation is
received by the adaptation manager. In the CoBRA frame-
work, adaptation only takes place if no affected service is
currently executed. Therefore, at the beginning of the store

phase, the adaptation process blocks as long as a service is
in use (service lock), but no further service calls are allowed
(adaptation lock). These consistency issues are managed by
the proxies introduced in section 4.2.3. When the service
lock is released, the adaptation process begins. First the
references to the service object held in the service proxies
are removed. With the adaptation lock set, all service invo-
cations affected by the adaptation block in their proxies as
shown in figure 7. The second step in the store phase is the
storage of the component state associated with the bundle
under replacement as described in section 4.2.2. In short,
the store phase ensures a consistent state in the adapted
component via the consistency management and the first
part of the state transition protocol is applied, by storing
the local state in the adaptation manager registry.

The switch phase represents the time interval, where the un-
derlying component is replaced. Assuming that a consistent
state is reached in the store phase, the adaptation manager
first removes the component to adapt and if successful, in-
stalls the replacing component. In case of an unsuccessful
installation of the replacing component, a rollback mecha-
nism restores the adapted component to ensure continuous
service availability. During the installation process of the
replacing component, the adaptation manager injects the
state container of the adapted component for state restora-
tion purpose. This is the beginning of the restore phase.

The restore phase is the final part of the adaptation process.
At first the state of the replacing component is restored by
the restore function in conjunction with the previously in-
jected state container. Then the component propagates all
services to the framework. At this point all affected cur-
rently blocking service proxies receive a notification about
the service arrival. As a response all notified proxies update
their reference to the adapted service object and resume
all stalled service invocations. The adaptation lock is finally
released by the adaptation manager and the adaptation pro-
cess is finished. From the viewpoint of a service requester
the above depicted approach of the CoBRA Framework en-
sures a fully transparent and atomic adaptation of services
in a consistent matter.

5. RELATED WORK
Service-oriented approaches like Jini [1] or OSGi [18] are
frameworks referring to SOA concepts introduced in sec-
tion 2. Jini is a Java based platform and supports multi-
ple registries in a distributed environment and introduces
a service leasing concept in which the service access time
is restricted. OSGi provides a centralized service registry
and a lightweight Java based component model with a dy-
namic lifecycle management. Therefore OSGi incorporates
not only the SOA approach, but a service-oriented compo-
nent model, introduced in [6].

Service adaptation is discussed among others in [4] or [16],
which both follow a replacement strategy. These approaches
both use handler objects to decouple user and provider of
an interface and to control access. Architectures based on
the concept of [15] enable runtime adaptation by controlling
the sent messages between components. Other approaches
like [5] or its integration in OSGi [8] compose components
from subcomponents, which are the target of replacement, to

enable the adaptation of the whole component to changing
demands. These approaches based on the FRACTAL Com-
ponent model lack the runtime support for adaptation due
to the missing focus on synchronisation and state transition
mechanisms.

Another strategy to overcome the problem of adaptation
is based on delegation. [21] proposes an approach, where
adaptation is a computation of a difference function between
the adaptation partners. This difference function is realized
as an aspect which is woven into the component to adapt.
Kniesel [14] introduces a concept for adaptation on object-
level based on a delegation concept. It propagates a concept
for object inheritance. In other words, not only classes may
be subject to inheritance, but also instances of classes at
runtime.

For the CoBRA Framework an integration of both, ser-
vice orientation and a component model is necessary. The
service-oriented component model introduced by [6] provides
an approach to integrate the two concepts of service orien-
tation and component based design. The CoBRA approach
takes this idea on and currently provides a prototype based
on the OSGi Service Platform enhanced with the discussed
service adaptation concept.

6. CONCLUSIONS AND FUTURE WORK
This paper presented an approach to replace service im-
plementations at runtime to provide a foundation for au-
tonomic, self-managing, self-healing, self-optimizing, self-
configuring and self-adaptive applications.

Because services are highly connected in a SOA environ-
ment, taking a service offline, even if a replacement is avail-
able, may influence a lot of depended services and applica-
tions. We have presented a possibility to achieve runtime
adaptation using dynamic AOP and described the advan-
tages and disadvantages of that approach. Due to the fact
that the disadvantages outweigh the benefit of using d-AOP,
we introduced the replacement of components at runtime to
switch the implementation of a service. The challenges in
our runtime adaptation approach are the transparent and
atomic replacement, while preserving the state of the com-
ponents. To fully meet the introduced requirement of trans-
parency the extraction of the state transition from compo-
nent code is the ongoing core research field, as well as the
integration of dynamic adaptable aspects for the realisation
of crosscutting concerns, that help to avoid scattered and
tangled code.

In the CoBRA prototype the OSGi Service Platform pro-
vides the dynamic lifecycle management and a lightweight
service-oriented component model. Based on this platform,
the management facilities for consistency and state preser-
vation are incorporated in a transparent matter. The reali-
sation of the prototype based on the OSGi Service Platform
with its lightweight design enables the appliance in manifold
application areas, ranging from embedded systems to cluster
environments, which are also currently under examination.
The integration of the CoBRA runtime adaptation into an
OSGi based Fragment component model is another field un-
der development. A possible model for the integration is

proposed by [8].

We are currently developing a database management system
which uses the CoBRA prototype to test our approach in a
large scale evaluation, as well as studying the influence of
persistent data stores on the state migration and developing
a model to support transactions in CoBRA.

In conclusion the CoBRA framework can be used to build
self-managing systems by adding a layer to manage the
adaptation of services with respect to changing require-
ments.

7. REFERENCES
[1] K. Arnold. The Jini architecture: dynamic services in

a flexible network. In DAC ’99: Proceedings of the 36th
ACM/IEEE conference on Design automation, pages
157–162, New York, NY, USA, 1999. ACM Press.

[2] J. Balasubramanian, B. Natarajan, D. C. Schmidt,
A. S. Gokhale, J. Parsons, and G. Deng. Middleware
support for dynamic component updating. In
R. Meersman, Z. Tari, M.-S. Hacid, J. Mylopoulos,
B. Pernici, Özalp Babaoglu, H.-A. Jacobsen, J. P.
Loyall, M. Kifer, and S. Spaccapietra, editors, OTM
Conferences (2), volume 3761 of Lecture Notes in
Computer Science, pages 978–996. Springer, 2005.

[3] C. Bidan, V. Issarny, T. Saridakis, and A. Zarras. A
dynamic reconfiguration service for corba, 1998.

[4] T. Bloom. Dynamic Module Replacement in a
Distributed Programming System. PhD thesis,
Massachusetts Institute of Technology, 1983.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. The FRACTAL component model
and its support in Java: Experiences with
auto-adaptive and reconfigurable systems. Softw.
Pract. Exper., 36:1257–1284, 2006.

[6] H. Cervantes and R. S. Hall. Autonomous adaptation
to dynamic availability using a service-oriented
component model. In ICSE ’04: Proceedings of the
26th International Conference on Software
Engineering, pages 614–623, Washington, DC, USA,
2004. IEEE Computer Society.

[7] R. Chitchyan and I. Sommerville. Comparing dynamic
AO systems. Technical report, Dynamic Aspects
Workshop (held with AOSD 2004). Technical Report
No. 04.01, Research Institute for Advanced Computer
Science (RIACS),California, USA. Pages 23-36, 2004.

[8] M. Desertot, H. Cervantes, and D. Donsez. FROGi:
Fractal components deployment over OSGi. In
W. Löwe and M. Südholt, editors, Software
Composition, volume 4089 of Lecture Notes in
Computer Science, pages 275–290. Springer, 2006.

[9] E. Gamma, R. Helm, and R. Johnson. Design
Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional Computing
Series. Addison-Wesley, 1995.

[10] M. N. Huhns and M. P. Singh. Service-oriented
computing: Key concepts and principles. IEEE
Internet Computing, 9(1):75–81, 2005.

[11] T. Illmann, F. Kargl, M. Weber, and T. Krüger.
Migration of mobile agents in Java: Problems,
classification and solutions. In Proceedings of the

MAMA’00, Wollogong, Australia, 2000.

[12] F. Irmert, Meyerhöfer, and M. Weiten. Towards
Runtime Adaptation in a SOA Environment. In
W. Cazzola, S. Chiba, Y. Coady, S. Ducasse,
G. Kniesel, M. Oriol, and G. Saake, editors,
Proceedings of ECOOP’2007 Workshop on Reflection,
AOP and Meta-Data for Software Evolution
(RAM-SE’07), pages 17–26, Berlin, Germany, 2007.

[13] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, Proceedings European
Conference on Object-Oriented Programming, volume
1241, pages 220–242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

[14] G. Kniesel. Type-safe delegation for run-time
component adaptation. In ECOOP ’99: Proceedings of
the 13th European Conference on Object-Oriented
Programming, pages 351–366, London, UK, 1999.
Springer-Verlag.

[15] J. Kramer and J. Magee. The evolving philosophers
problem: Dynamic change management. IEEE
Transactions on Software Engineering,
16(11):1293–1306, 1990.

[16] A. Mukhija and M. Glinz. Runtime adaptation of
applications through dynamic recomposition of
components. In Proc. of 18th International Conference
on Architecture of Computing Systems, 2005.

[17] Organization for the Advancement of Structured
Information Standards. Reference model for service
oriented architecture 1.0, commitee specification,
August 2006.

[18] OSGi Alliance. OSGi Service Platform core
specification, release 4, August 2005.

[19] M. P. Papazoglou and W.-J. Heuvel. Service oriented
architectures: approaches, technologies and research
issues. The VLDB Journal, 16(3):389–415, 2007.

[20] A. Popovici, G. Alonso, and T. Gross. Just-In-Time
Aspects: Efficient Dynamic Weaving for Java. In
AOSD ’03: Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development,
pages 100–109, New York, NY, USA, 2003. ACM
Press.

[21] S. C. Previtali. Dynamic updates: Another middleware
service? In Proceedings of the 1st Workshop on
Middleware-Application Interaction (MAI’07), pages
49–54. ACM Digital Library, 20 March 2007.

[22] S. M. Sadjadi and P. K. McKinley. A survey of
adaptive middleware. Technical Report
MSU-CSE-03-35, Department of Computer Science,
Michigan State University, East Lansing, Michigan,
December 2003.

[23] I. Sommerville. Software engineering (5th ed.).
Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1995.

[24] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[25] E. Thomas. Service-Oriented Architecture. Prentice
Hall PTR, Upper Saddle River, 2005.

[26] A. Vasseur. Dynamic AOP and Runtime Weaving for

Java - How does AspectWerkz Address It? AOSD 2004
International Conference on Aspect-Oriented Software
Development, Invited Industry Talk, March 2004.

