A Scenario-Centric Approach for the Definition of the Formal Test Specifications
of Reactive Systems

Vladimir Entin, Sebastian Siegl, Klaus Meyer-Wegener

Universitit Erlangen-Niirnberg

vladimir.entin|sebastian.siegl |klaus.meyer-wegener @cs.fau.de

Andreas Kern
Audi Electronics Venture GmbH
andreas.kern@audi.de

Michael Reichel
Technische Universitdt Braunschweig
extern.michael.reichel @audi.de

Abstract

Complex modern embedded automotive software systems
require different test techniques in each of the development
stages. Most common are Model in the Loop, Software in
the Loop, and Hardware in the Loop. The majority of these
test techniques are automated. Each uses different notations
for test data, pass/fail criteria, system-under-test interface
definition and test-platform-specific parameterization. This
leads to a series of problems such as exchangeability of test-
specification notations among different teams working on
the same functional module, reusability of test cases and
uniformity of test-specification representation. This con-
tribution proposes an approach for the formal and test-
platform-independent definition of the test specification of
reactive systems. Additionally, the application of the ap-
proach in three concrete use-case scenarios elicited in a
pre-development department of AUDI AG is shown.

1. Introduction

The development process of complex embedded auto-
motive software systems such as e.g. driver assistance sys-
tems (DAS) consists of various stages. In each of these
stages, different established test techniques such as Soft-
ware in the Loop (SiL), Model in the Loop (MiL) and Hard-
ware in the Loop (HiL) [11], or tests with actual measure-
ment data are employed. Once a certain degree of maturity
is achieved, the software module along with such artifacts
as requirement document and test specification are passed
to another development team for the next stage. At each
stage requirements and test specification are further elabo-
rated and completed. Although in [4, 10] approaches have

Copyrightby IEEE.DOI: 10.1109/TAICPART.2009.21

been proposed to formalize the requirements definition, this
is still lacking for the test specifications which are either
informal or quite test-platform-specific (e.g. test scripts or
XML documents). Thus they often cannot be used as they
are by the next development team. That in turn leads to a
loss of test knowledge.

For instance, the pre-development department of a car
manufacturer and a supplier work together on the same
functionality. The pre-development department initially
develops first prototypes and specifies the requirements.
The task of the supplier is to implement and optimize the
Electronic-Control-Unit (ECU) software for use in the serial
production. Finally the supplier submits the software mod-
ule to the Original-Equipment-Manufacturer (OEM) depart-
ment whose goal is the execution of system and acceptance
tests according to the requirements.

Another important observation to be made is that, in
practice, even within a single development team, there is of-
ten no standard representation of the test specification. For
example, in the area of pre-development of DAS there are,
on one side, maneuver catalogs for the actual test drives
and, on the other side, a set of XML documents describ-
ing a drive scenario that allow its execution in the simula-
tion (SiL). In the latter case the knowledge of the require-
ments an ECU software module has to fulfill (pass/fail cri-
teria) is solely present in the mind of the module developer.
The goal of this contribution is to propose a test-platform-
independent test-specification description for the early de-
velopment stages of reactive systems with complex environ-
mental interaction such as e.g. DAS. It can be reused in all
the following development stages.

Theoriginal publicationis availableat http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=053

buettner
Schreibmaschinentext
Copyright by IEEE. DOI: 10.1109/TAICPART.2009.21
The original publication is available at http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05381630

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

2. Approach
2.1. General Concept

The approach is conceptually divided into five levels
(see Figure 1). The artifacts created and gradually refined
at each level are represented either as models defined by the
domain engineer or as their instances specified by the do-
main expert (section 2.2) which might be stored e.g. in a
database. A domain expert is usually a person directly in-
volved into the development of the SUT (whereas a domain
engineer is concerned with the formalization of the test do-
main). The representation of each artifact does not change
from level to level except the transformation which takes
place at Level 5.

Level 1: scenario definition - Firstly, we introduce the
notion of scenario which is a formal description of the com-
plex interactions of the system under test (SUT) with its en-
vironment. The latter not only considers time aspects of
the interaction, but also the absolute and relative position of
the participants taking part in the interaction. The scenarios
are not derived from the functional requirement specifica-
tions of a specific software module as in [1, 8], and they do
not represent a desired behavior of the SUT. They are just
a formal description of the complex interaction which takes
place between the SUT and the actors which influence the
behavior of the SUT. The data generated during the execu-
tion of such a formal scenario description can be employed
as test data. In the context of DAS such test data com-
prises e.g. static and dynamic object lists detected by the
sensor units, videos recorded either by virtual simulation
or by a real camera during a measurement drive, implicitly
recorded information about the lane, weather and light con-
ditions. In practice, we have observed that the scenarios
tend to be used for several projects within a single develop-
ment stage. Moreover, they are oftentimes, at least partly,
reused within a certain development stage for a new DAS.
Hence, the scenarios basically do not depend on the func-
tional requirements of a certain function. The basis for the
formal description is considered to be mostly the knowledge
of the developer or, in certain cases, electronic documents
with informal scenario descriptions. For the area of DAS
we have chosen the statechart method [6] as the formal de-
scription. It is created by the DAS developer, that is, domain
expert, and does not refer to any specific test technique nor
to any development project. The scenarios are described by
a small predefined set of generic attributes which are de-
fined in our meta-model-based approach (section 2.2). We
define, for example, current velocity as a generic attribute
for the acceleration and the lane change drive maneuvers.

Level 2: project and testing technology selection -
Usually each development stage (section 1) is subdivided
into various projects. At this level the developer has to
decide for which project and which specific test technique
within the project the test specification has to be created.
He further chooses a subset of pre-defined generic scenarios
(Level 1) for further refinement in a specific project and test
technique. As mentioned before, various test techniques are
usually applied within single projects. In the early devel-
opment stages of the DAS typically MiL and SiL. are em-
ployed. Furthermore, the so-called “open loop” SiL auto-
mated test run uses very large files with data recorded pre-
viously during measurement drives and feeds them into the
DAS module. This test method is called “open loop” be-
cause the module output has no influence on the environ-
ment nor on the module itself. Lastly, actual test drives are
of great importance.

Level 3: scenario completion — According to the chosen
project and test technique the developer completes the se-
lected generic scenario description with the project-specific
attributes. For example, projects dealing with image-based
lane-detection algorithms will need such information as
lane marking or the light conditions whereas systems sup-
porting the driver during the lane change will need such at-
tribute as lateral acceleration of the the vehicle in which the
SUT has been installed (EGO-vehicle).

Level 4: test specification creation - At this level the
developer completes a test specification by including the
project-specific scenario description (Level 3) as well as the
following information: The set of attributes which speci-
fies the desired SUT behavior is determined. They have to
be further analyzed by the domain engineer whether they
are generic or specific to a certain project or test technique.
Then they are added to the corresponding part of the model
so that the developer during the test-specification definition
only has to define specific values. Due to the meta-model-
based approach (section 2.2) these attributes can easily be
managed and classified. We consider the desired SUT be-
haviour as being part of a test specification created for a
certain project and a test technique (see Figure 1) and not
as a part of a project-specific scenario. Thus, it is a separate
artifact. Since in the early development stages of reactive
systems primarily black-box testing of complex handwrit-
ten software modules is applied, we do not specify a be-
havior model of a DAS module as is done in the area of
model-based testing [9, 2]. Instead the abstract interface of
the SUT under a specific test technique as well as its actual
use have to be defined.

Level 5: test specification transformation - The goal
of the transformation is the creation of a test-case descrip-

tion and the information needed to start an automated or, in
some cases, manual test process. The automated test pro-
cess is basically concerned with the automated test execu-
tion whereas the manual one might involve not only the ex-
ecution but also the creation of the test data such as e.g.
measurement data recorded during a drive. At this level
the entire set of artifacts created and refined at the Level
4 is employed. The transformation process is triggered by
the domain expert however certain preparative steps have to
be taken previously by the domain engineer (section 2.2).
The result of the transformation is a platform specific repre-
sentation of the test specification defined at all the previous
levels. Additional information might be created during the
transformation (section 2.2) as well.

A particular role in the transformation is reserved to the
formal scenario description. Depending on the test tech-
nique and, above all, on the test platform, a scenario de-
scription can be transformed into a test-data description.
This could be a complex representation of the traffic and
the behavior of the vehicle under test for a SiL run. But
in the case of actual test drives, it could just as well be a
document containing a set of guidelines for the test driver.

Level 1

Generic
Scenario

Level 2
Project Project

Generic
Scenario

Generic
Scenario

Generic
Scenario

Real

‘ SiL H MiL ‘ Data ‘ SiL H MiL ‘ Data
Level 3
Specific Specific Specific Specific uses!) C/ é;;:f
Scenario Scenario Scenario Scenario R
| S~_ments.
| e
)
Level 4 "7
SuT SuT SuT SuT defines
Interface Desired Interface Desired -
Definition Behavior Definition Behavior Domasn Expert
Level 5

Format Specific Format Specific
Test Specification Test Specification

Figure 1. Approach for platform-independent
test specification

2.2. Process

In this section we present steps to be completed for the
application of the approach.

Step 1: meta-model definition - In this step a thor-
ough evaluation of the already productively used scenario-
description formats such as e.g. drive-maneuver catalogs,
XML-based SiL traffic descriptions or videos of already
completed measurement drives has to be accomplished.

Since most formal specification techniques, including state-
charts [6], are too generic for a representation of the sce-
narios, one has to restrict them by defining an appropriate
meta-model. Moreover, in order to improve the comprehen-
sibility of the chosen formal method, modeling guidelines
have to be elaborated by the domain engineer. They give
specifics e.g. on how to model concurrent or synchronized
execution of certain actions. For the DAS area an exem-
plary guideline would specify the lane numbering and the
vehicle positions relatively to the EGO-vehicle.

Finally, the meta-model must provide the possibility to
define such important parts of the test specification as the
desired behavior (pass/fail criteria) and the SUT parame-
terization. Clearly, their representation, similar to that of
a scenario, must allow a distinction between generic and
project-specific attributes.

Step 2: partial instantiation of the meta-model - In
this step the domain engineer elaborates in cooperation with
the domain experts the following information: concrete
categories for the elements of the test specification, con-
crete elements for these categories such as states, events,
guards, actions and finally generic, project-specific and test-
technique-specific attributes for these elements.

At last he instantiates the meta-model with the gathered
elements.

Step 3: creation of the test-specification model and its
instantiation — By means of an editor a domain expert
creates a model of the test specification and then instanti-
ates it with the concrete values. Instead of creating a com-
pletely new test-specification model, he can select an exist-
ing one and instantiate it with the appropriate values. In the
area of reactive systems, test specifications, especially test
data, often show the same structure but different parame-
ter values, so the separation into test-specification model
and test-specification instance increases the reusability of
the test specification.

Step 4: transformation - Usually, before the transforma-
tion process starts, the domain expert has to create a trans-
formation template. Per test technique there is one template
to be created. As regards the specification of the test en-
vironment some approaches [3, 7] suggest the definition of
this at the model level. Our experience has shown that in-
formation related to the test environment (mostly call pa-
rameters of the execution and evaluation environment, the
configuration parameters of a database or configuration of
a test runner) is altered in rare cases, so it is advisable to
create it in the transformation step, that is, in the template.

An example of the described process is shown in Fig-
ure 2.

- consists of ———————— consists_of
C Step 1
+yconsists_of consists_of
Domain 5 = "
Engineer Quasi-static State|
Category = ‘ Event ‘ ‘ Action ‘
Action State
instance_of instance_of instance_of| instance_of,

" Step 2
g» ‘Drive Constanﬂy‘ ‘ Lane Loss ‘ Create Event ‘

e [stenastn | || [Ranstart |

Events
Lane-la(ed ARl Cor_ﬁ.ru_uon
- Step 3
E Stand Still } } }Drive Constantly,
Domain Expert ¥ T

i i i
linstance_of instance_of instance_of

Domain
Engineer

Stand Still
LaneNumber=1

Drive Ce
Speed=50 km/h

AccRate=2 m/s"2

Step 4

i T

Template ‘

‘ Template ‘

Template

Domain Engineer

Figure 2. Example of test specification defini-
tion process

3. Use-Cases

Our approach is currently being evaluated at a DAS pre-
development department of AUDI AG. During the eval-
uation phase we have identified three concrete use-cases
which are presented in the following.

3.1. Use Case 1: Actual Measurement Drives

Measurement drives are often carried out at a dedicated
test site. A thorough preparation for the latter is indispens-
able. By means of the graphical editor the developer creates
the scenario and the corresponding test-equipment descrip-
tions. In the next step they are stored in a drive scenario
database [5]. During the transformation phase an electronic
document is created with the description of the scenario in
a table form. A driver performs the measurement drive ac-
cording to the document and stores the recorded data in the
database. The developer also has to assign the data file to a
concrete instance of the scenario which has previously been
saved in the database by the developer. In order to execute
the automated SiL. open loop test run, the DAS developer
has to complete a test specification in which he specifies the
data needed for the automated test run (section 2.1). Next he
selects the appropriate transformation template which cre-
ates a set of configuration files so that in a couple of mouse
clicks he is able to start the automated test run.

3.2. Use Case 2: Variation of Scenario and Test
Technique

The developer would like to start a test run with the sce-
nario which has been already recorded at the test site how-

ever with slightly different parameters that would make its
execution under real-life conditions impossible. He might,
for instance, change the distance of the tailgating vehicle
under test to the target vehicle to a very small one so that the
danger of collision under real-life circumstances would be
extremely high. By applying our approach the DAS devel-
oper simply creates a new test specification. He might also
use the existing one in case SUT parameters and pass/fail
criteria are the same as in the SiL. open loop test run with
the measurement data. The test specification includes a
slightly changed scenario instance which is completed with
the project specific attributes. The former is consequently
transformed into the file set necessary to execute the SilL
test run. This use case demonstrates a multi-platform appli-
cation of a scenario.

3.3. Use Case 3: Transfer of the Test Knowledge

So far the application of the approach within one au-
tomotive software development phase i.e. pre-development
was described. The question which arises is how to trans-
fer the test knowledge from this phase to further devel-
opment stages such as e.g. serial development and espe-
cially the department concerned with the system and ac-
ceptance test. They receive an informal functional speci-
fication and a formal test specification with scenarios from
the pre-development. The developers refine the functional
specification. In the next step the given formal test specifi-
cation is completed. Thus, the definition of the scenarios is
reused in the creation of the test specification in the serial
development (Figure 3).

System Tests of the Prototype Pre-Development

_ __GR G

7 = =

creates Test ion Y e W

TestSpec TestSpec TesiSpec
Real Dive ~ SiL SiL

1 t (Open Loop)

Transformation

Developer=Tester

Serial Development

Scenario
Database

4 | specific
Scenario
Transformation

~
p
T e
Developer Team 5(:52’;:?0
- “Traffic
Description
(HiL)
.

Acceptance Tests

Transformation

Test Team

Figure 3. Re-use of scenarios across devel-
opment phases

Due to our transformation approach the formal generic

scenario descriptions could be used as table documents
(Figure 3) for the communication between the developer
team and the test team. The test team could then complete
them with the project specific information and employ ite.g.
for the automated creation of the virtual traffic description
for the HiL test run.

4. Implementation

We are currently implementing a set of tools for the
approach. The modeling hierarchy is stored in the drive-
scenario database. A .NET-based graphical user interface
allows the definition of the test specification and its storage
in the database. The transformation templates are managed
in the same database. During the transformation phase a test
specification is being extracted from the database and trans-
formed to the .ecore format by a dedicated tool. In the next
step the Open Architecture Ware is triggered by the afore-
mentioned tool. The former takes as input the meta-model
definition of the test specification, the instance of the lat-
ter and the transformation template. We are using XPand as
transformation language. The scenario database is currently
being used by four different departments at AUDI AG.

5. Discussion

It is essential to introduce the presented approach into
the daily development process of the departments and to
consider the cost of the introduction. On the one side there
is the effort to gain acceptance of the formal scenario no-
tation from the domain experts. This effort can be reduced
by choosing the notation which the majority of the DAS
developers know from the modeling environments already
in use, e.g. MatLab/SimuLink. The modeling guidelines
prove to be of great help to improve the comprehensibility
of the chosen notation and as consequence the successful
introduction of the approach.

The second aspect to be taken into consideration is the
time invested in the completion of a scenario description
or a test specification. Until now the scenario descriptions
have been created and stored locally by each DAS devel-
oper so that a variety of them existed often duplicated. By
introducing a clear separation between the test specification
model and its instance our approach allows the developer
to avoid the duplication of the test-specification description
and improves the reusability of the latter. Clearly, the cost
of manual creation remains, although it is possible to com-
plete manually created scenario descriptions e.g. by the data
recorded during a measurement drive in order to further re-
duce it.

6. Acknowledgement

We would like to express our deepest gratitude to
Dr. Karl-Heinz Siedersberger for the continuous support
and help.

References

[1] S. Baerisch. Model-driven test-case construction. In ESEC-
FSE ’07: Proceedings of the the 6th joint meeting of the Eu-
ropean software engineering conference and the ACM SIG-
SOFT symposium on The foundations of software engineer-
ing, pages 587-590, New York, NY, USA, 2007. ACM.

[2] S.Benz. AspectT: aspect-oriented test case instantiation. In
AOSD °08: Proceedings of the 7th international conference
on Aspect-oriented software development, pages 1-12, New
York, NY, USA, 2008. ACM.

[3] L. Borner, T. Illes-Seifert, and B. Paech. The testing process
- a decision based approach. In ICSEA "07: Proceedings of
the International Conference on Software Engineering Ad-
vances, page 41, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[4] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M.
Lott, G. C. Patton, and B. M. Horowitz. Model-based testing
in practice. In ICSE ’99: Proceedings of the 21st interna-
tional conference on Software engineering, pages 285-294,
New York, NY, USA, 1999. ACM.

[5] V. Entin. A database for the management of drive scenar-
ios during the development of driver assistance systems.
Master’s thesis, Friedrich-Alexander University Erlangen-
Nuremberg, Audi Electronics Venture GmbH, 2006.

[6] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Sci. Comput. Program., 8(3):231-274, 1987.

[7] Object Management Group. UML Testing Profile. Version
1.0 formal, 2007.

[8] C. Pfaller, A. Fleischmann, J. Hartmann, M. Rappl,
S. Rittmann, and D. Wild. On the integration of design and
test: a model-based approach for embedded systems. In AST
'06: Proceedings of the 2006 international workshop on
Automation of software test, pages 15-21, New York, NY,
USA, 2006. ACM.

[9] A. Pretschner, W. Prenninger, S. Wagner, C. Kiihnel,
M. Baumgartner, B. Sostawa, R. Zolch, and T. Stauner. One
evaluation of model-based testing and its automation. In
ICSE °05: Proceedings of the 27th international conference
on Software engineering, pages 392—401, New York, NY,
USA, 2005. ACM.

[10] M. Satpathy and S. Ramesh. Test case generation from
formal models through abstraction refinement and model
checking. In A-MOST ’07: Proceedings of the 3rd interna-
tional workshop on Advances in model-based testing, pages
85-94, New York, NY, USA, 2007. ACM.

[11] E. van Meel, G.-P. Duba, T. Bock, and B. Strasser. Develop-
ing properties for driver assistance systems by means of an
inovative and constant development process. FISITA 2008
World Automotive Congress - Springer Automotive Media,
11, 2008.

