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ABSTRACT
Public cloud providers offer hundreds of heterogeneous hardware
instances. For analytical query processing systems, this presents a
major challenge: depending on the hardware configuration, perfor-
mance and cost may differ by orders of magnitude. We propose a
simple and intuitive model that takes the workload, hardware, and
cost into account to determine the optimal instance configuration.
We discuss how such a model-based approach can significantly
reduce costs and also guide the evolution of cloud-native database
systems to achieve our vision of cost-optimal query processing.
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1 INTRODUCTION
Much of the work on query processing minimizes runtime on a
particular hardware configuration. Examples are research on dis-
tributed query processing using Infiniband [7] or in-memory query
processing for NUMA machines [15]. The implicit underlying as-
sumption is that the hardware configuration is more or less fixed,
and that the objective is to optimize the software design for that
hardware. This perspective comes from a traditional procurement
process where servers are acquired under a multi-year time horizon
and can therefore be thought of as fixed.

While the assumption of fixed hardwaremay be reasonable in the
on-premise world, in the cloud the situation is different. Per-second
billing makes moving applications between instances possible, and
public cloud providers offer hundreds of heterogeneous instance
types. The quantitative differences between instance types are large
and they differ across multiple dimensions as well as price. For
example, looking at CPU cores per dollar in AWS EC2, the best
option (c5) is 4.9 times cheaper than the most expensive one (x1e).
For DRAM capacity the factor is 3.5 (x1e vs. c5d) and for network
bandwidth 28.5 (c5n vs. x1e). This makes selecting an instance
difficult: depending on the workload characteristics (e.g., CPU-
bound or network-bound) any of these instances may be best.

Consider distributed data warehouse systems like Redshift [11]
or Snowflake [9] running large analytical queries in the cloud:

• Would it be better to use a balanced configuration or specifi-
cally focus on one resource (CPU, network, SSD, or DRAM)?

• Is a single large instance preferable to several smaller ones?
• Which public cloud (AWS, Azure, GCP) is cheapest?
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Figure 1: Model-based hardware/software co-evolution

• Should one cache data on instances or always read it on
demand from a distributed file system?

• Would it be better to invest engineering effort into optimiz-
ing networking or the storage I/O stack?

To answer such questions rigorously, one needs to take an eco-
nomic perspective. In the cloud, resources (e.g., CPU cores, DRAM,
SSD, network) are fungible and can be traded against each other,
with money serving as the medium of exchange. Minimizing run-
time is not per se the optimization goal, but rather workload cost
in dollars given some runtime constraints. Focusing on workload
cost directly leads to the notion of cost optimality, which is the
minimum monetary cost for executing a particular workload in
some cloud hardware landscape.

Current cloud systems are still far away from cost optimality.
To provide evidence for this claim, let us compare the cost of a
hypothetical query engine running on an AWS EC2 instance with
AWS Athena. Our example query scans 1 TB of data from S3. If
we execute this query on c5n.18xlarge, we have 72 vCPUs and a
peak network bandwidth of 100Gbit. At a realistic rate of 80Gbit/s,
scanning 1 TB of data from S3 takes 100 seconds. During these
100 seconds, the query engine has to process 10GB/s using the 72
vCPUs, amounting to 142MB/s per vCPU. Modern query engines
can process data at this rate even for moderately complex queries.
This means that the execution of our 1 TB query is likely network-
bound and takes 100 seconds. If, exploiting per-second billing, we
shut down the instance after 100 seconds, the hourly on demand
c5n.18xlarge price of $3.89 results in a total query cost of only $0.11.
The cost of Athena, on the other hand, is $5 for the same query, i.e.,
in this scenario Athena is almost 50× more expensive. The use of
spot or reserved rather than on demand instances would increase
the gap further to 100-200×.

Our long-term vision is to build a cloud-native OLAP system
that approaches cost optimality, as shown in Figure 1. We believe
that in order to achieve this ambitious goal we need a model that
estimates how much a particular workload would cost on some
specific hardware configuration (similar to the implicit model in
the previous paragraph). The key feature of such a model is that it
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assumes a hypothetical system that is capable of fully exploiting all
available hardware resources, rather than modeling any specific,
existing database system with all its performance bottlenecks. In
other words, the model provides a lower bound for workload cost.

The model is meant as a stepping stone for building a cost-
optimal OLAP system in the cloud. Developing any industrial-
strength database system is difficult and requires a multi-year ef-
fort. In the past decade, one could observe rapid changes in the
hardware landscape (e.g., large DRAM capacities, fast NVMe SSDs,
high-performance networks) and an increasing gap between what
modern hardware is theoretically capable of and what real-world
systems achieve. Currently, database architects have to rely on
implicit assumptions (e.g., networking is the performance bottle-
neck) when making architectural decisions (e.g., compress data
before sending it over the network). As illustrated in Figure 1, our
cost-based approach enables rigorous, data-driven decision making,
which will help bringing systems closer to the limits of the available
hardware – in particular when evolving the system over time.

The rest of the paper is structured as follows: Section 2 covers
important background and related work on analytical query pro-
cessing in the cloud. In Section 3, we outline how a cost-optimality
model can be used to improve cost efficiency by describing several
specific applications. Section 4 then presents a simple but useful
performance model for OLAP in the cloud based on intuitive rules
(rather than black-box machine learning). We conclude in Section 5.

2 BACKGROUND AND RELATEDWORK
Cloud SaaS data warehouses like Redshift for AWS [11], Snowflake
for AWS, Azure, or GCP [9], and AnalyticDB for AlibabaCloud [24]
allow querying large data sets without having to install software
or procure physical hardware. With Redshift, customers have four
main hardware options [1]: dc2.8xlarge (32 vCPUs, 244GB RAM,
2.56 TB SSD), dc2.large (a sixteenth of dc2.8xlarge), ra3.16xlarge
(48 vCPUs, 384GB RAM, unspecified SSD cache size for S3), and
ra3.4xlarge (a fourth of ra3.16xlarge). The instances can be com-
bined to homogeneous clusters of up to 128 nodes, and Amazon
recommends the newer ra3 class, which due to S3 support improves
the separation between storage and compute. Some important re-
sources (e.g., network speed) are unspecified and the instances are
only available with Redshift, but not for general EC2 workloads.

Snowflake customers only have a single knob for influencing the
hardware configuration: the “warehouse size” controls the number
of servers and can be set to values between 1 (“X-Small”) and 128
(“4X-Large”). The cost scales linearly with the number of servers.
Snowflake does not specify the hardware configuration. However,
performance debugging information suggests [2] that, on EC2,
Snowflake currently relies on relatively small c5d.2xlarge instances
(8 vCPUs, 16GB DRAM, one 200GB NVMe SSD).

Both Redshift and Snowflake support scale out and are moving
to a design where the local SSD is used as a cache for the data stored
on S3. Snowflake invests more in compute, Redshift more in DRAM.
Snowflake relies on small instances and scale out, whereas Redshift
also offers larger instance types making scale out less important.
Overall, the hardware options for both systems are fairly limited in
comparison to the instance types available on EC2. Both systems
strive to be elastic and to separate storage from compute, though

Snowflake still leads in terms of elasticity: its lazy caching archi-
tecture [22] makes resizing instant, and, by default, all instances
automatically shut down after 15 minutes of inactivity.

The cost structure of similar DB-as-a-Service products has been
analyzed in other work, generally concluding that the current of-
ferings make it hard for customers to choose cost-optimal config-
urations. Floratu et al. [10] found that, in the long run, renting
commercial systems with an hourly license fee is often cheaper
than free alternatives due to their superior performance. To unbur-
den users from such counter-intuitive choices, other work suggests
presenting customers pre-packaged SLAs based on price and per-
formance predictions that rely on workload statistics and query
optimizer cost models [19]. Although the underlying motivations
are similar, this work focuses on database engineers building sys-
tems that run on IaaS offerings, rather than customers of managed
systems. Consequently, our approach differs in that we explicitly
model the workload and how it relates to hardware, while simulta-
neously abstracting from any specific implementation.

There is also a second class of systems with a radically different
pricing model that is arguably even closer to the SaaS spirit in the
cloud. Instead of paying for clusters (and having to pick their size),
services like Google BigQuery or Amazon Athena allow users to
only pay per data access. In both BigQuery and Athena, scanning 1
TB of data costs $5, regardless of the query. It is not known whether
these systems implement dynamic hardware selection.

There is prior work on hardware selection in the cloud focus-
ing on how to automatically tune the hardware configuration for
existing database systems [8]. One representative, recent example
is OPTIMUSCLOUD [16], which optimizes performance per dollar
for Cassandra and Redis by tuning software configuration and de-
termining hardware instances. The basic approach is to treat the
DBMS as a black box and predict performance changes for different
hardware and software configurations based on earlier executions.
Another approach is to rely on reinforcement learning [17]. The
goal of this paper, in contrast, is to develop a general model for
analytical query processing in the cloud that not only recommends
hardware but also provides intuition on system architecture.

There are some existing formulas and online tools for select-
ing cluster sizes and configuration options for databases based
on various workload metrics. For example, AWS published rule-
of-thumb formulas for cluster sizing and resizing in Redshift [4].
Microsoft started providing a performance measurement tool for
estimating the minimum managed Azure SQL database size when
migrating from the on-premise version, that superseded an older,
independently-developed online tool [5, 6]. These solutions focus
on specific, managed database products, limiting their utility to
database developers and people running non-managed databases.

The amount of prior work on OLAP in the cloud is large and we
can only mention some of it. Snowflake recently published a work-
load trace containing performance statistics for all queries over a
two-week period in 2018 [22] that was instrumental in understand-
ing and modeling OLAP workloads. Tan et al. [21] experimentally
compare OLAP systems (including Redshift) on EC2. There has been
work on analytics using spot instances [13, 14], a possibility we
mention in this paper, and using serverless infrastructure [18, 20],
which we do not consider here. Workload-dependent hardware
selection has also been suggested by Wei et al. [23].
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3 TOWARDS COST-OPTIMAL OLAP
This paper is based on two key ideas. The first is that in a hetero-
geneous cloud hardware landscape the goal must be to minimize
workload cost rather than runtime. This idea is neither original nor,
we believe, controversial. However, the second point may require
some justification: We argue that it is useful to have a performance
model for a hypothetical, idealized system that is capable of exploit-
ing all hardware resources available in the cloud. The system we
model can, for example, take full advantage of 100Gbit networks
and large arrays of NVMe SSDs. Since until recently such hard-
ware was not available [12], most existing systems fall short of this
assumption. One may therefore reasonably ask what the point of
modeling a hypothetical system of this caliber is. We argue that
precisely because such a system does not yet exist, having a model
that shows the shortcomings of existing systems is useful:

Cost Optimality As A Benchmark For New Systems.While
building a new cloud-native query processing engine that performs
as well as our model is challenging, it is not impossible. Indeed,
our model only assumes well-understood database concepts like
caching, distributed query processing, and hybrid hash join-like
operators. Thus, the hurdles are mainly a matter of engineering
and systems building. We believe that, during system design and
development, our cost optimality model is a useful benchmark
against which a new system can be compared.

Evidence-Based Performance Feature Prioritization. Our
model includes performance optimizations likemulti-layer instance-
local caching and distributed query processing. Disabling these
features in themodel would allow system architects to quantify how
large the performance and cost benefit is. This enables evidence-
based decisions about prioritizing performance features.

Market Pricing. Every cost calculation in this paper is done
using on demand prices, which are stable but also fairly high. For
elastic systems and fluctuating workloads, a potentially more eco-
nomic alternative are spot instances, which are often only 20% to
30% of the on demand cost but fluctuate on an hourly basis. Our
cost-based approach makes it easy to exploit spot instances: we sim-
ply have to periodically (e.g., every hour) re-run our model using
the current spot market prices, and migrate to a new instance type if
beneficial. The drawback when using spot instances is that they can
be shut down at very short notice. The probability of this happening
depends on the instance type, and the numbers are published by
Amazon in the form of interruption frequencies. An interruption
frequency of five percent for an m5n instance, for example, means
that five percent of m5n spot instances were interrupted in the last
month to regain capacity [3]. Depending on the maximum accept-
able interruption frequency, different cost savings can be achieved.
Wemeasured this by gathering spotmarket data for three weeks and
applying the model to it. The result for one workload is shown here:

on demand: i3 is best

spot price, < 5% interruptions: m5n is best

spot price, > 20% interruptions: i3 is best
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Figure 2: Opt. instance for different workloads over 5 years
the market price is low. In this case, if the instance type chosen by
the model is not available, we can simply switch to the second best
option, which usually is only slightly worse.

Hardware/Software Co-Evolution. The available hardware
in the cloud is not static, but changes over time. Our model allows
reacting to new hardware opportunities by recomputing the model
with the new hardware data. We can illustrate this idea by applying
our model to hardware configurations and prices from the past 5
years. Figure 2 retroactively shows how the costs for three different
workloads (CPU-bound, balanced, and network-bound) developed
according to the model. Since 2015, there have been two major
relevant changes in the EC2 hardware landscape. The first was the
introduction of fast NVMe SSDs in mid 2017. This had a significant
impact on the balanced workload, which moved from an instance
with 20 disks (d2) to an instance with 8 NVMe SSDs (i3) – almost
halving workload cost. The second major change was the introduc-
tion of 100Gbit network instances at the end of 2018, which had
even larger consequences: the cost of the network-bound workload
dropped to a quarter of the initial cost (and even the balanced work-
load switched away from i3 to c5n). The CPU-bound workload, in
contrast, did not see large gains in our 5-year period – which we
find surprising given the rising number of CPU cores in commodity
servers. This historical example illustrates how our model can be
used to react to changes in the hardware landscape. When a new
instance type with novel hardware is announced, our model can be
used to quantify how large the benefit of switching would be. This
benefit may then be compared with the engineering effort required
to exploit the new hardware.

4 MODELING OPTIMAL OLAP IN THE CLOUD
One important component for achieving cost optimality is picking
the best hardware for a particular query workload. Hardware se-
lection is a challenging problem because any hardware resource
(CPU, DRAM, SSD, network) can have a substantial impact on query
performance – depending on the workload, any resource can be
the bottleneck. One approach would be to choose a balanced hard-
ware configuration, i.e., one where the budget is spent roughly
evenly across all resources. However, for some workloads using a
balanced configuration may be highly wasteful: why spend money
on expensive SSDs, for example, if the data fits into RAM? Besides
considering the available instances and prices, it is therefore crucial
to model not just the hardware but also the workload.

In the following, after stating some basic assumptions, we present
a sequence of models that predict how expensive a particular work-
load is on some given instance. For expository reasons, we start
with a very basic model and gradually augment it to make it more
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Table 1: Selection of EC2 instances (June 2020, us-east-1)

inst. cores DRAM SSD network cost ↑

name # /$ GB /$ TB /$ Gbit/s /$ $/h

c5n.18 36 9.3 192 49.4 - - 100 25.7 3.89
c5.24 48 11.8 192 47.1 - - 25 6.1 4.08
c5d.24 48 10.4 192 41.7 4×0.9 0.78 25 5.4 4.61
m5.24 48 10.4 384 83.3 - - 25 5.4 4.61
i3.16 32 6.4 488 97.8 8×1.9 3.04 25 5.0 4.99

m5d.24 48 8.8 384 70.8 4×0.9 0.66 25 4.6 5.42
m5n.24 48 8.4 384 67.2 - - 100 17.5 5.71
r5.24 48 7.9 768 127.0 - - 25 4.1 6.05

m5dn.24 48 7.4 384 58.8 4×0.9 0.55 100 15.3 6.53
r5d.24 48 6.9 768 111.1 4×0.9 0.52 25 3.6 6.91
r5n.24 48 6.7 768 107.4 - - 100 14.0 7.15
r5dn.24 48 6.0 768 95.8 4×0.9 0.45 100 12.5 8.02
i3en.24 48 4.4 768 70.8 8×7.5 5.53 100 9.2 10.85
x1e.32 64 2.4 3,904 146.3 2×1.9 0.14 25 0.9 26.69

realistic. We use the AWS EC2 hardware data for Linux instances
from https://ec2instances.info as of June 2, 2020 in us-east-1
(North Virginia). A selection of the instances is shown in Table 1.
Note that our model-based approach would also be applicable to
other public clouds – it would even allow us to compare costs across
different clouds.

4.1 Scope and Assumptions
Throughout the paper, we focus on analytical query processing
rather than, for example, transactional or machine learning work-
loads. This allows us to focus on throughput and ignore latency
(e.g., when reading data from storage). To keep things manageable,
we also ignore instances with GPUs and FPGAs, which are available
in the cloud but are still not widely used for OLAP.

We assume that the primary persistent storage medium is a
distributed file storage service like Amazon S31. S3 is a solid foun-
dation for analytical data-intensive systems as it provides reliable
persistence and high bandwidth. S3 is also much cheaper than al-
ternatives like instance storage or EBS [21]. Assuming that data is
always stored on S3 has a number of implications for our model.
First, we can ignore the S3 storage cost because it is equal for all
hardware configurations and therefore does not affect hardware
selection. Furthermore, S3 does not charge for bandwidth and per-
request costs are negligible in comparison with instance costs if we
access large data chunks (e.g., 100MB or more). Finally, since S3
is connected through the network, we assume that the S3 access
speed is equal to 80% of the network speed, which is the maximum
bandwidth from S3 we measured with 100Gbit instances.

4.2 Basic Model (M1)
We start modeling a query workload using only two variables:
CPU hours and scanned data . Since we initially assume data
is always scanned from S3, query efficiency only depends on the
network speed and the number of CPU cores of an instance.

Our goal is to calculate the workload cost on a particular in-
stance. To do this, we first have to calculate the execution time.
Let us illustrate this calculation with a workload of 1 CPU hour
and 10GB scanned running on instance c5.24, which has 48 cores

1Microsoft (Azure Blob Storage) and Google (Cloud Storage) offer very similar services.

and a 25Gbit network card. Executing 1 CPU hour with 48 cores
takes 1ℎ/48 = 75𝑠 seconds and reading 10GB over a 25Gbit net-
work takes 10𝐺𝐵/(25𝐺𝑏𝑖𝑡/𝑠 ∗ 80%) = 4𝑠 . We assume that the CPU
and network phases are consecutive, which means that the total
execution time for the example workload would be 75𝑠 + 4𝑠 = 79𝑠 .
Finally, we have to multiply the execution time with the instance
cost, resulting in a workload cost of 75𝑠 ∗ $4.08/ℎ = $0.085. Using
this approach, we can calculate how expensive a workload would
be on a particular instance type. In the basic model, only CPU and
network speed matter and instances with large DRAM (e.g., m5dn)
or SSD (e.g., i3en) capacities are not beneficial. As Table 1 suggests,
either c5 or c5n is the cheapest instance depending on the ratio
between CPU hours and scanned data in this model.

4.3 Caching and Materializing Operators (M2)
We next incorporate data caching: instead of reading all data from
S3 and therefore the network, we buffer data on DRAM and SSD.
We use half of the available DRAM and SSD capacities for caching
scanned data (the rest will be used for materializing intermedi-
ate results). Since real-world data accesses are skewed (e.g., some
columns are accessedmore frequently than others), we add a cache
skew variable based on the Zipf distribution to the model. Let us
illustrate the impact of this variable using an example, where 3 TB
are scanned on a c5d.24 instance with a skew of 0.2:

c5d RAM capacity c5d SSD capacity

0
1
2
3

0 1 2 3

Scanned Data (TB)

A
c
c
e

s
s
e

s

189GB RAM reads
1888GB SSD reads 923GB S3 reads

The amount of data accessed for each level depends not just on the
skew setting but also the instance type (numbers in GB):

inst. no cache skew cache skew=0.2 cache skew=0.9

name RAM SSD S3 RAM SSD S3 RAM SSD S3

c5n.18 96 - 2,904 189 - 2,811 1,491 - 1,509
c5d.24 96 1,800 1,104 189 1,888 923 1,491 1,276 233
i3en.24 384 2,616 0 577 2423 0 2,034 966 0

DRAM and instance storage are not only used to scan input data,
but also for query processing. Complex queries often materialize
parts of the scanned data, e.g., during joins or aggregations. Sincewe
want to be able to execute arbitrarily large queries on any instance,
it must be possible to temporarily materialize large data sets. As
with data storage, we model a three-layer hierarchy consisting of
DRAM, SSD (if available on that instance), and S3. Thus, like in
Snowflake [22], for large queries, S3 acts as ephemeral storage of
unlimited capacity.

To model materialization, we introduce the materialization
fraction variable that determines how much of the scanned data
has to be materialized. For example, with 1 TB scanned and a ma-
terialization fraction of 0.1, 100GB of data has to be materialized.
In most workloads, the fraction is well below 1 because scanned
data is often filtered before being materialized. For example, the
average materialization fraction across all Snowflake customers is
0.3 – though there is substantial variability across customers.

It is not enough to know the total volume of materialized data,
but it has to be broken down toDRAM, SSD, and S3. In practice, most
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Figure 3:ModelM2with 1 CPUhour and 0.001 cache andmat. skew, illustrating that the best instance depends on theworkload

queries materialize little data and DRAM is large enough for them.
Fewer queries require spooling to SSD, and even fewer to S3. In the
Snowflake workload, for example, 81% of all read-only queries are
materialized to DRAM, 18% to SSD, and 0.8% to S3. We model this
by introducing the materialization skew variable. The effect of
materialization skew is similar to cache skew, i.e., it shifts accesses
from S3 to SSD andmainmemory. Highmaterialization skew values
model in-memory query processing, and low values out-of-memory
processing using SSD and/or S3.

Caching and materialization cause instance types with larger
DRAM and SSD capacities to become more attractive. To illustrate
this effect we vary the scanned data andmaterialization fraction, but
keep the CPU hours (1) and both skew parameters (0.001) constant.
The left-most plot in Figure 3 shows the cheapest instance for 110
different workloads. For low amounts of scanned data (<100GB),
the workload is CPU bound, and thus c5 is the cheapest instance. For
high amounts of scanned data (>10 TB), c5n wins because the data
sets are so large that caching does not help and only fast network
matters. But unlike the basic model (M1), in between these two
extremes, instances with larger DRAM capacities (m5 and r5) and
SSDs (c5d and i3) are optimal. Interestingly, between the area where
c5d and i3 win, the SSD-less c5n instance is cheapest. This is because
instance storage in EC2 is only available in certain granularities
and in this area c5d has too little capacity while i3 is too expensive.

Let us now look at the cost differences between instances rather
than just the cheapest instance. The four plots on the right of Fig-
ure 3 show the normalized workload costs (relative to the optimal
instance) for four selected instances. We see that in some settings,
c5, c5d, and i3 have more than four times the cost of the optimal
instance, even though these instances are optimal in some cases
themselves. This shows that choosing a good instance can have a
large impact and that the choice depends on the workload. Another
finding is that c5n is remarkably good across all configurations, be-
ing at most 1.26×more expensive in the worst case. c5n has 100Gbit
networking but little DRAM and no instance storage – therefore
it relies heavily on S3. Our model assumes that it is possible to
read and write with 10GB/s from S3, which is only surpassed by
instances with 8 NVMe SSDs, which are much more expensive than
c5n (cf. Table 1). This makes c5n highly attractive for large-scale
OLAP in the current EC2 pricing structure2. 100Gbit networking
2Recall that S3 itself is cheap because we assume data is on S3 anyway (for fault
tolerance) and that request sizes are large enough to make per-request costs negligible.
Also note that S3 and the network are resources shared between multiple users with

has only recently been introduced to EC2 and seemingly led to a
tectonic shift in the hardware landscape, as depicted in Figure 2.

4.4 Scale Out (M3)
We next model scale out, i.e., the capability of using more than one
node for query execution. We assume that cached data is horizon-
tally partitioned across nodes. Thus, in effect, the total effective
cache size grows linearly with the number of nodes. While, in prin-
ciple, most resources grow linearly with the number of nodes, in
practice, achieving perfect scalability in a distributed setting is unre-
alistic – in particular when many nodes are involved. We therefore
introduce the scalability fraction variable that determines
how much of the workload time can be scaled. The variable mod-
els how well the system scales and, using Amdahl’s law, we can
compute the speedup for the workload. For example, a scalability
fraction of 0.9 means that the maximum speedup is 10 (even with
an infinite number of instances), while a scalability fraction of 1
models perfect scalability.

Another downside of distributed query processing is that it re-
quires the nodes to exchange data with each other through the
network, for example, when joining or aggregating. The volume of
exchanged data for analytical queries is very similar to the amount
of data that needs to be materialized (Materialization is usually
caused by operators like join and aggregation that also require
exchanging the same amount of data). Instead of introducing a new
variable, we can therefore reuse the materialization fraction vari-
able from the previous version of the model to compute the volume
of the required network traffic. Thus, if a workload is executed
on multiple instances, we add a networking phase for exchanging
the materialized data. If only a single instance is used, this phase
is not necessary, resulting in a (realistic) discontinuity between
distributed and single-node query processing.

Figure 4 illustrates how scaling out (to at most 128 nodes) using
a scalability fraction of 0.95 affects execution time and cost. De-
pending on the instance type and count, we observe differences of
almost two orders of magnitude. In the lower-left part of the figure
we see the Pareto frontier consisting of instance types c5n, r5n, and
m5n. The model switches from 24 c5n to 26 r5n nodes and from
37 r5n to 52 m5n nodes, exploiting their larger DRAM capacities,
which only become significant with larger node counts in aggrega-
tion. However, the figure also shows that with a scalability fraction

potentially unstable performance, but we cannot easily model this. For these reasons,
our model makes S3 look very good.
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Figure 4:ModelM3with 5CPUhours, 10TB scan, 0.001 skew,
0.3 materialization fraction, and 0.95 scalability fraction

of 0.95, the workload cost rises with larger node counts because
scalability decreases – creating a tradeoff between cost and time.

All results presented so far rely on full instances. However, as
discussed in Section 2, many systems use smaller instance slices.
c5d.2, for example, which Snowflake seems to be use, has a twelfth
of the resources and price of a full c5d.24 instance. One exception to
this rule is network bandwidth: For small slices like c5n.4xlarge and
below, AWS specifies the network bandwidth as “Up to 25Gbit” and
we have indeed temporarily observed close to 25Gbit bandwidth.
However, this seemingly free bandwidth is only available for a
limited duration – after some time the bandwidth approaches the
payed-for slice fraction. Since we model the steady state, smaller
slices do not appear beneficial: a full instance will always have a
lower or equal workload cost and lower runtime than any of its
slices because we assume imperfect scalability when scaling out.
The c5d.2 (steady) curve in Figure 4, with its much higher workload
cost, shows this clearly. However, slices can certainly be useful for
bursty workloads, as the c5d.2 (burst) curve in the figure shows.

4.5 Discussion and Preliminary Evaluation
Let us discuss some possible objections to the model. With only six
variables, our model is quite simple, and indeed we do not claim
to accurately predict the execution time of any existing system.
Trying to model the performance behavior of a real system would
make the model and its predictions almost as hard to understand
as the modeled system. Our goal is to have a robust model that
is roughly correct and easy to reason about, rather than a com-
plex model that tries to be completely accurate, which is probably
unattainable anyway. The simplicity of the model also makes it
quick to evaluate: to determine the best instance, we exhaustively
enumerate all instance configurations for the given workload.

The model is based on a number of implicit assumptions that we
would like to justify. We assume that CPU work can be perfectly
parallelized on a single node (though we leave some slack by ig-
noring hyperthreads). This is based on our experience that such a
scalability is indeed achievable on systems below 100 cores [15]. In
a distributed setting, on the other hand, achieving perfect scalabil-
ity is more difficult and the number of nodes is unbounded, which
is why we chose to introduce the scalability fraction variable. We
further assume that the networking, storage, and CPU phases are
consecutive rather than overlapping (we use the sum rather than
the maximum of the phase durations). While real systems may try
to overlap these phases, queries with a significant networking or
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Figure 5: Prototype measurement vs. prediction on a 100GB
aggregation query

I/O phase will likely result in more CPU load as well, which is why
we chose to be more conservative in this case.

Finally, the assumption that all data is (also) stored on S3 is
based on the fact that S3 is much cheaper than instance storage:
S3 costs less than $25 per TB per month, while the same would
cost $130 on an i3en SSD instance and $83 on a d2 disk instance.
A design primarily relying on instance storage is therefore rarely
(and even then only marginally) beneficial in comparison with our
S3 plus caching approach.

To show the viability of the model, we built a prototype query
engine that can run simple aggregation queries. It is capable of load-
ing data from S3, caching it in DRAM and on local SSDs if available,
and using DRAM, SSDs, and S3 as storage for intermediary results.
The model variables can be set based on the tested relation size and
the number of unique values in the group column. We executed this
engine on a variety of EC2 instances and measured the execution
cost. The expected behavior is that the measured costs correlate
with the model predictions, but are worse by a near-constant factor
since the predictions target an ideal system. This behavior can be
seen in Figure 5 for an aggregation query that scans 100GB of data
from S3, measured on 11 different EC2 instances.

5 SUMMARY AND FUTUREWORK
For cloud-native database systems, efficiency and cost effectiveness
are closely related. This paper proposes an intuitive model for ana-
lytical query processing in the cloud that estimates the runtime and
cost of a workload on a particular hardware instance. The most im-
portant applications of the model are making data-driven architec-
tural design decisions, finding performance bottlenecks, and evolv-
ing data management systems towards the goal of cost-optimal
query processing in the cloud. An implementation of the model is
provided at https://github.com/maxi-k/costoptimal-model.
Additionally, an interactive web-based tool for exploring the model
is available at https://maxi-k.shinyapps.io/costoptimal/.

Finally, it has not escaped our notice that our economic approach
can be applied to other areas besides analytical database query
processing workloads. The training of machine learning models,
for example, could be optimized with a similar methodology using
a model that focuses on floating point calculations. Exploring our
cost-based approach in other domains would be an interesting
avenue for future work.
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