

SKYSHARK: A Benchmark with Real-world Data for Line-rate Stream Processing with FPGAs <u>Maximillian Langohr</u>, Tim Vogler, Klaus Meyer-Wegener

Motivation

 \square We need to test and benchmark our systems

 \square Reviewers love good evaluations

▷ Many benchmarks use synthetic/generated data (TPC-DS, TPC-H, Yahoo, etc.)

 Σ Sometimes we want more complex data and realistic applications

\boxdot There are not a lot of benchmarks out there for stream processing systems using modern hardware

 \square Some require the modifiaction of your system or side-channel communication

Problem?!

▷Real and complex data is hard to find

 \Box Companies don't like to share their data

Proposal

- A benchmark for stream processing systems enabeling the measurement of modern hardware (FPGA)
- Using real-time aircraft tracking data (ADS-B) combined with community sourced relational data
 OpenSky Network, OurAirports, etc.
- Σ Queries based on real problems and applications in air traffic control
- \Box Benchmarking tool to benchmark your SPS

"OpenSky Network" : https://opensky-network.org "Our Airports" : https://ourairports.com/

#LWDA2023

Aircraft Tracking Data

 Σ Radar is primarly used to survey the air space (Primary Radar) \square Requires line of sight

Aircrafts broadcast their current identification, position etc. continuously (ADS-B)

- \square Unencrypted for anyone to receive
- ▷ Can be used to track aircrafts across oceans or larger landmasses
- ▷ Regulated by international law and conventions

Aircraft Tracking Data

 \sim Over 30.000 flights per day in the EUROCONTROL area

\Box Over 45.000 flighs per day in the US

 $\boldsymbol{\boxtimes}$ Millions of datapoints that can be collected and used

"OpenSky Network" : https://opensky-network.org/network/explorer

#LWDA2023

Networks

Commercial Services

- Commercial providers sell ADS-B data for substantial fees
- Prominent Example: Flightradar24
- Utilize official data and data from their own receiver networks

Community Projects

 \Box Huge communities of hobby pilots

Platforms like OpenSky provide this data for free

Cher platforms provide data on aircrafts, airports and more (e.g. OurAirports)

SKYSHARK

"Flightradat24": https://www.flightradar24.com/

"Bringing Up OpenSky: A Large-scale ADS-B Sensor Network for Research". Matthias Schäfer, Martin Strohmeier, Vincent Lenders, Ivan Martinovic, Matthias Wilhelm In Proceedings of the 13th IEEE/ACM International Symposium on Information Processing in Sensor Networks (IPSN), pages 83-94, April 2014.

6

#LWDA2023

OpenSky Network

Collects and provides ADS-B Messages Developed by researchers for researchers D5000 Receivers around the world Hosts conferences/symposium on air traffic related topics

Accessing the Data

 \Box Can be accessed without an account \Box API call limitations

\bigtriangleup Java, Python packages

🗅 Impala (Trini) Shell

Requires special permission from OpenSky

▷Specific Data Sets

□Just contact OpenSky directly

The Data Set

Streaming Data

□Live Tracking Data (States) (ca. 13 GB)

Identifier (e.g. icao24, callsign)
 Current position (e.g. longitude, latitude)
 Course and speed (e.g. vertical rate)

```
{
 "icao24": "acdfa0",
 "callsign": "DPJ929",
 "origin_country": "United States",
 "time_position": 1687875562,
 "last_contact": 1687875562,
 "longitude": -80.8825,
 ...
```

Relational Data

△Aircrafts (387,183 Tuples)

□Identifiers (e.g. icao24)
 □Type
 □Manufacturer

△Airports (73,736 Tuples)

 \square Identifiers (e.g. ident, type, name) \square Position, elevation, size

▷Flight Schedule (138,091 Tuples)

icao24, callsign
 Departure airport, destination airport
 Time to destination
 Flight phase

Benchmark Metrics

Latency

 \Box Can be measured per tuple \Box Only queries with non blocking operations work (filter, projection etc.) \Box We measure end-to-end

Throughput

Input Throughput
 Tuples per second sent to the SPS
 Output Throughput
 Tuples per second received from the SPS

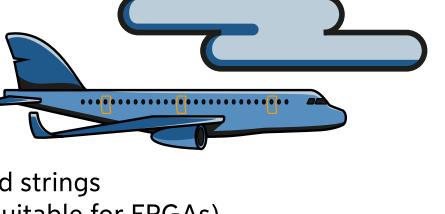
Benchmark Queries

▶ 14 Queries based on real problems and applications
 ▶ Based on a master thesis (hobby pilot)

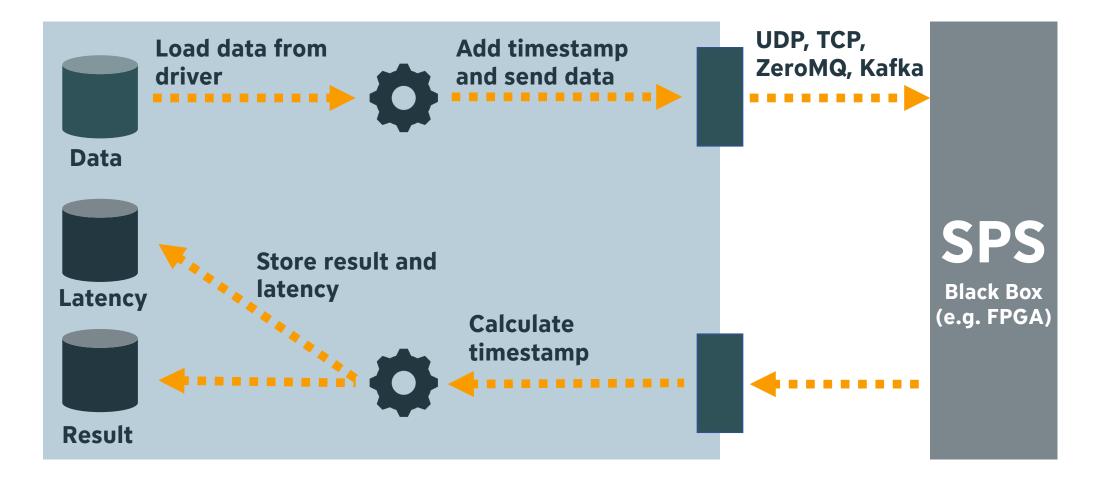
igsim Varying focus and complexity

 \square From simple filter expressions to multi-join

Queries 1-9 allow tuple wise latency measurement Simple/Complex filter expressions on numerical values and strings Projections containing complex algorithmic expressions (suitable for FPGAs)


Queries 10-14 use blocking operations (e.g. windows, aggregations) Static joins, window expressions containing aggregations

"Development and Implementation of a Database-Benchmark Using Real-Time Flight Data (ADS-B) and Flight Schedules ". Tim Vogler, Master Thesis, FAU, 2023


10

Benchmark Tool

Future Work

\Box Explore more data sources

▷ Mainly OpenSky Network and OurAirports

Σ Explore more use-cases for the data set

 \square Relational databases \square Time-series analysis

▷ Maintain the project and incorporate feedback from the community

 \Box Let us know your thoughts and ideas

QUESTIONS ?

Follow Our Project

SKYSHARK.ORG

GITHUB

TEAM: Maximilian Langohr, Tim Vogler, Klaus Meyer-Wegener ARTWORK: Acelya Aksu