• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Lehrstuhl für Informatik 6 CS6
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
    • Impressum
    • Datenschutz
    • Barrierefreiheit
    1. Friedrich-Alexander-Universität
    2. Technische Fakultät
    3. Department Informatik
    Friedrich-Alexander-Universität Lehrstuhl für Informatik 6 CS6
    Menu Menu schließen
    • Lehrstuhl
      • Aktuelles
      • Über uns
      • Personen
      • Kontakt
      Hauptseite Lehrstuhl
    • Forschung
      • Evolutionäre Informationssysteme
        • Open and Collaborative Query-Driven Analytics
        • Data Driven Relationship Discovery in Large Time Series Datasets
        • Processing Heterogeneous Assets and Resources to discover Ontologies and Semantics
        • Sprechaktbasiertes Fallmanagement
        • Schemainferenz und maschinelles Lernen
      • Datenqualität
        • DQ-Step – Improvement of data quality at a reference enterprise in plant engineering
        • Datenqualität und Innovationsfähigkeit von Medizinprodukten
      • Datenintegration
        • Open and Collaborative Query-Driven Analytics
        • Processing Heterogeneous Assets and Resources to discover Ontologies and Semantics
        • Schemainferenz und maschinelles Lernen
        • DQ-Step – Improvement of data quality at a reference enterprise in plant engineering
      • Prozessmanagement
        • Sprechaktbasiertes Fallmanagement
      • Datenbanksysteme
        • Know Your Queries!
        • REAPER: A Framework for Materializing and Reusing Deep-Learning Models
        • SKYSHARK – Benchmarking von Datenanalysesystemen mit Echtzeit-Flugdaten
        • Architektur von Nicht-Multiplen Autoencodern mit Nicht-Verlustbehafteter Informations-Agglomeration
        • Schemainferenz und maschinelles Lernen
        • Bewertung von Datenspeichersystemen
        • Erzeugung von Symboltabellen für die Komprimierung von Zeichenketten mit Hilfe von Frequent-Substring Trees
        • Anfrageoptimierung und Daten-nahe Verarbeitung auf Rekonfigurierbaren SoCs für Big-Data-Analyse
        • Query-Optimierung und Near-Data-Processing auf rekonfigurierbaren SoCs für Big Data Analyse (Phase II)
      • Datenstromsysteme
        • Data Stream Application Manager
        • SKYSHARK – Benchmarking von Datenanalysesystemen mit Echtzeit-Flugdaten
        • Systemübergreifende Optimierung von Datenstromanfragen
      • Datenmanagement in den Digital Humanities
        • Campusnetzwerk Digitale Geistes- und Sozialwissenschaften
        • Franken in historischen Reiseberichten
      • Moderne Datenbanksysteme
        • Pufferverwaltung und Datenzugriff
      Hauptseite Forschung
    • Lehre
      • Lehrveranstaltungen
      • Curriculum
      • Examensarbeiten
      • Prüfungsinformationen
      Hauptseite Lehre

    Lehrstuhl für Informatik 6

    Datenmanagement

    Bereichsnavigation: Forschung
    • Abgeschlossene Forschungsprojekte
    • Veröffentlichungen
    • Evolutionäre Informationssysteme
      • Open and Collaborative Query-Driven Analytics
      • Data Driven Relationship Discovery in Large Time Series Datasets
      • Processing Heterogeneous Assets and Resources to discover Ontologies and Semantics
      • Sprechaktbasiertes Fallmanagement
      • Schemainferenz und maschinelles Lernen
    • Datenqualität
    • Datenintegration
    • Prozessmanagement
    • Datenbanksysteme
    • Datenstromsysteme
    • Datenmanagement in den Digital Humanities
    • Pufferverwaltung und Datenzugriff
    • Moderne Datenbanksysteme

    Data Driven Relationship Discovery in Large Time Series Datasets

    Data Driven Relationship Discovery in Large Time Series Datasets

    (Drittmittelfinanzierte Einzelförderung)

    Titel des Gesamtprojektes:
    Projektleitung: Richard Lenz
    Projektbeteiligte: Lucas Weber, Richard Lenz
    Projektstart: 1. April 2022
    Projektende: 31. März 2025
    Akronym: DARTS
    Mittelgeber: Siemens AG
    URL:

    Abstract

    Modern complex systems, such as power plants or other industrial structures, combined with the rise of IoT and Industry 4.0, produce thousands of time series measuring different aspects within these systems. As time series measure the state of these complex systems, the correct identification and integration of these time series are key to enabling advanced analytics and further optimization. As acquiring contextual information about each time series and their relations is currently a time-consuming and error-prone manual process, techniques to support or even automate this process are in high demand. While there are different available metadata formats, such as Brick, this metadata often is not available for all data sources and is not commonly used for all systems. Integrating time series at scale requires efficient algorithms and robust concepts that can deal with the heterogeneity and high volume of time series from different domains.

    Additional Applications and Outcomes:

    Changepoynt Python Package

    Changepoint correlation heavily relies on suitable changepoint detection algorithms, many of which were implemented from research papers within a pip-installable package "changepoynt" (https://changepoynt.de). Changepoint detection, a critical task in time series analysis, identifies abrupt shifts or transitions in data patterns, offering insights into underlying phenomena. Developed with flexibility and scalability in mind, "changepoynt" integrates a range of state-of-the-art methods for changepoint detection, empowering researchers across domains to efficiently analyze and interpret their data.

    CATCH: Contextual Anomaly Tracking with Changepoint Detection

    Together with a research partner from the industry, we basically use the inverse of our idea of relationship discovery to detect contextual anomalies. The hypothesis of the project states that signals, which should have relations (e.g. Input-Output measurements of a dynamical system), behave anomalously if they stop showing simultaneous changes. In contrast to classical anomaly detection methods, change point anomaly (the comparison of multiple changepoint signals) is mainly targeted at contextual anomalies, where two signals are measuring the same component, and consequentially should change at similar times when the plant changes operational status. In case the signals change separately, a contextual anomaly occurs.  While the methods are available in theory, the project is necessary to test the applicability, feasibility, and correct parametrization of the methods for selected use cases. A demonstrator for a two-dimensional case can be found under https://anomaly.changescore.de/ and for the multi-dimensional case under https://heatmap.changescore.de/.

    Publikationen

    • Weber L., Lenz R.:
      Machine learning in sensor identification for industrial systems
      In: it - Information Technology (2023)
      ISSN: 1611-2776
      DOI: 10.1515/itit-2023-0051
      BibTeX: Download

    Lehrstuhl für Informatik 6 (Datenmanagement)
    Friedrich-Alexander-Universität Erlangen-Nürnberg

    Martensstraße 3
    91058 Erlangen
    • Kontakt
    • Impressum
    • Datenschutz
    • Barrierefreiheit
    • Facebook
    • RSS Feed
    • Xing
    Nach oben